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0 Welcome

0.1 Introduction

This document contains an assortment of lecture notes prepared initially for use in lectures
of 2–3 hours, focused at a listener with a decent amount of mathematical maturity and some
experience with category theory, algebra, topology, and so on. There is no overarching goal,
other than to cover interesting topics in and around category theory, homological algebra,
geometry, higher category theory, and higher algebra.

Very often, the notes have been prepared without too much care, and so one should ex-
pect mistakes, occasional hand-waving, and suboptimal approaches. Hopefully, all the es-
sential ideas remain correct. On a related note, while there has been some effort put into
making the exposition clear, we are sometimes rather terse as it makes it easier to use the
notes for lectures, where the exposition may be expanded upon in any case.

References are not always carefully tracked. If in doubt, assume no originality.

0.2 Foundations

In this preliminary section, we spell out the general foundational framework we adopt in
these notes. Since foundations will never play a huge role in what we do, or at least it won’t
affect how we do things generally, we will not be too careful. However, the crux of it is
as follows: we adopt your favourite common axiomatics for set theory, such as ZFC, along
with Grothendieck’s universe axiom. A (Grothendieck) universe is essentially a model for
ZF set theory within ZFC set theory itself, so it is a set wherein one can do all basic expected
operations (and contains ℕ). The universe axiom postulates that every set is contained in a
universe. In particular, we may pick some universe �1 3 ∅, the elements of which we call
the small sets. Iterating this, the axiom also implies the existence of a hierarchy of universes

�1 ∈ �2 ∈ �3 ∈ · · · ∈ �= ∈ · · ·

and we call elements of �2 large, elements of �3 very large, and so on. If we have picked
some universe�, we may also refer to a set - as�-small to mean that - ∈ �, or that - is in
bijection with a set in�. Note that we will essentially never need to use this nor think about
it in any detail. To be noted as well is that in this framework, the notion of a class is subsumed
by the notion of a set, in the sense that we may think of elements of �2\�1 as analogous to
“proper classes.” If one wishes, type theory can play a similar role, where one demands a
hierarchy of type universes instead.

0.3 Planned contents

Some planned contents already have a rough lecture section assigned to them, but some
others are a lot looser and so are hard to pin down enough for that to be reasonable, andmay
span many lectures. Here is a list to which I aspire.

(1) The theory of (∞, 1)-categories, blending the standard approaches (say, [Lur09] and
[Cis19]) with the synthetic approach of [RV22].

(2) Sheaves on sites, probably following [KS06]. Relating sheaves between siteswill be a fo-
cus. Maybe something from [Lur09, §6.2.2] and [Lur18, §1.3.1] to include∞-categorical
aspects.

(3) Approximable triangulated categories.

(4) Perverse sheaves, as an application of the gluing of t-structures.

4



(5) Brown representability.

(6) Topics surrounding model categories: Bousfield localizations, stable model categories,
algebraic small object argument?

(7) Operads, due to their importance in understanding e.g. �=-rings and their modules.

(8) Huber’s adic spaces, as a “reasonably elementary” formalism for rigid analytic geom-
etry.

(9) Condensed sets, with a focus on eventually building up to condensed analytic geome-
try (via Clausen & Scholze’s analytic stacks).

(10)  -theory, particularly of stable∞-categories or Waldhausen∞-categories. Perhaps re-
cent research extending the  -theory machine to certain large categories (dualizable
ones), à la Efimov.

(11) Waldhausen categories, i.e. categories with cofibrations and weak equivalences.

(12) “Lower” higher category theory, so 2-categories and bicategories. (Virtual) double cat-
egories, for their applications to∞-cosmoi.

(13) Topoi and∞-topoi.

(14) The theorem of Hoshino–Kato–Miyachi on t-structures generated by silting objects.
Also requires the computation of Ext1 in the heart of a t-structure in terms of the Hom-
sets in the ambient triangulated category.

(15) Witt vectors.
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1 Abelian categories

1.1 (Pre-)additive categories & additive functors

Definition 1.1. A pre-additive category is a category enriched in Abelian groups. In particular,
a pre-additive category C consists of

(1) a set of objects Ob(C),

(2) for each pair of objects (G, H) ∈ Ob(C)×Ob(C), an Abelian group HomC (G, H) = C(G, H),
and

(3) for each triple of objects (G, H, I) ∈ Ob(C) ×Ob(C) ×Ob(C) a composition law

◦ : C(H, I) ⊗ C(G, H) → C(G, I)

which is associative and unital.

That is, it’s just a category where each Hom-set has the structure of an Abelian group and
composition is bilinear.

Remark 1.2. This implies that for each G, H ∈ C , the set C(G, H) has a distinguished element 0
which is absorbative. This is a simple computation:

0 ◦ 5 = (0 + 0) ◦ 5 = 0 ◦ 5 + 0 ◦ 5 =⇒ 0 = 0 ◦ 5 .

The other direction for composition is dual. Categories with this property (or more general
ones) are sometimes called pointed, though this terminology is also used for the stricter notion
of a category with a zero object.

Exercise 1. Let C be a pre-additive category, and suppose that there is an initial object∅ ∈ C .
Show that ∅ is terminal. Dually, show that any terminal object ∗ ∈ C is also initial.

Our first goal is to show that the above exercise generalizes to arbitrary finite (co)prod-
ucts; note that initial/terminal objects are exactly empty (co)products.

Construction 1.3. Let C be a pointed category (i.e. one that admits zero morphisms), let
G1 , G2 ∈ C , and suppose that the product G1 × G2 exists. Denote by

?: : G1 × G2 → G: , : = 1, 2

the canonical projection maps. We can construct maps

8: : G: → G1 × G2 , : = 1, 2

by applying the universal property of the product to idG: and 0.

Proposition 1.4. Let G: , ?: , and 8: be as above. Then

idG1×G2 = (81 ◦ ?1) + (82 ◦ ?2).

Proof. By universal property, the following computation suffices:

?: ◦ ((81 ◦ ?1) + (82 ◦ ?2)) = ?: ◦ 8: ◦ ?: = ?:

where we use that ?: ◦ 8: = id. �

6



Remark 1.5. Intuitively, this is the statement that

(0, 1) = (0, 0) + (0, 1).

Proposition 1.6. Let C be a pre-additive category, and let G1 , G2 , H ∈ C . Suppose we have maps

?: : H → G: , 8: : G: → H

such that

idH = (81 ◦ ?1) + (82 ◦ ?2), ? 9 ◦ 8: =
{

idG: if 9 = :,

0 if 9 ≠ :.

Then

(1) (H, ?1 , ?2) defines a product G1 × G2, and

(2) (H, 81 , 82) defines a coproduct G1 q G2.

Proof sketch. To prove (1), we must show that the provided data makes H represent the
functor C(−, G1) × C(−, G2). Let I ∈ C . Then we see that

?:,∗ : C(I, H) → C(I, G:), 8:,∗ : C(I, G:) → C(I, H)

are maps of Abelian groups satisfying the assumptions in the proposition. It is then a simple
computation that this induces a functorial isomorphism

C(I, H) ∼−→ C(I, G1) × C(I, G2).

Similarly, to prove (2), the same argument applies but after applying C(−, I) instead. �

Remark 1.7. Objects in pre-additive categories equipped with maps as above are sometimes
called direct sums, and are denoted G1 ⊕ G2. The proposition shows that any a product of two
objects and a coproduct of two objects define the direct sum of those objects.

Corollary 1.8. Let C be a pre-additive category and let G1 , G2 ∈ C . The product G1 × G2 exists if and
only if the coproduct G1 q G2 exists if and only if the direct sum G1 ⊕ G2 exists. Furthermore, in the
case that these exist, the canonical map

G1 q G2 G1 × G2

G: G:

8:

is an isomorphism, where 8: are the maps in Construction 1.3.

Proof. Proposition 1.6 handles the first statement by a clear induction argument. For the
second statement, note that the maps 8: exhibit G1 × G2 as a direct sum by Proposition 1.6,
and therefore the induced map is an isomorphism. �

We conclude that in an appropriate sense, finite products and finite coproducts agree in
any pre-additive category. It turns out, rather profoundly, that the pre-additive structure on
a category is detected by these (co)products whenever they exist.

Proposition 1.9. Let C be a pre-additive category, and let 5 , 6 : G → H be morphisms in C . If G ⊕ G
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and H ⊕ H exist, then the morphism 5 + 6 is equal to the composition

G
ΔG−−→ G ⊕ G

5⊕6
−−−→ H ⊕ H

∇H−−→ H.

Proof sketch. One can check by a computation that

8G1 + 8G2 = ΔG , �
H

1 + �
H

2 = ∇H

and deduce that
∇H ◦ ( 5 ⊕ 6) ◦ 8G1 = 5 , ∇H ◦ ( 5 ⊕ 6) ◦ 8G2 = 6.

Therefore
∇H ◦ ( 5 ⊕ 6) ◦ ΔG = 5 + 6

as desired. �

Definition 1.10. An additive category is a pre-additive category which admits finite products.

Remark 1.11. An additive category therefore admits all finite direct sums, and the pre-
additive structure is entirely determined by the properties of the underlying unenriched cat-
egory. In fact, there is a characterization of additive categories in terms of purely ordinary
category theory. Specifically, a category C is additive if and only if

(1) it admits a zero object 0 ∈ C ,

(2) for any G, H ∈ C , the product G × H and coproduct G q H exist,

(3) the canonical map A : G q H → G × H induced by the maps from Construction 1.3 is an
isomorphism, and

(4) for all G ∈ C , there is some 0 ∈ C(G, G) such that

G
ΔG−−→ G × G (0,idG)−−−−→ G × G A−1

−−→ G q G ∇G−−→ G

is zero.

Here, (4) is what guarantees the existence of additive inverses.

Definition 1.12. A functor � : C → D between pre-additive categories is additive if for all
G, H ∈ C , the induced maps

C(G, H) → D(�G, �H)
are group homomorphisms.

Proposition 1.13. A functor between additive categories is additive if and only if it preserves finite
products.

Proof. See [KS06, Prop. 8.2.15]. �

1.2 Abelian categories

The category Ab of Abelian groups has certain special properties. First of all, it is additive;
this is clear. However, on top of that, given any morphism of Abelian groups, we can form
a kernel, cokernel, image, etc., and these behave well (e.g. in that they detect interesting
properties of the morphism). We wish to capture these properties in a general form.
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Definition 1.14. Let C be a category with a zero object, and let 5 : G → H be a morphism in
C . The kernel of 5 is the pullback

ker 5 G

0 H

5

in C . Dually, the cokernel of 5 is the pushout

G H

0 coker 5

5

in C .
Exercise 2. Express ker 5 and coker 5 in terms of an equalizer and coequalizer, respectively.

Exercise 3. Let C be a pre-additive category with a zero object.

(1) Show that a morphism 5 : G → H is a monomorphism if and only if for any 0 : I → G,
5 ◦ 0 = 0 implies 0 = 0.

(2) Show that whenever ker 5 exists, the canonical map ker 5 → G is a monomorphism.

Furthermore, dualize these statements to obtain the corresponding results for epimorphisms
and coker 5 .

Proposition 1.15. LetC be a pre-additive categorywith a zero object, and let 5 : G → H be amorphism
with a kernel and cokernel.

(1) The morphism 5 is monic if and only if ker 5 = 0.

(2) The morphism 5 is epic if and only if coker 5 = 0.

Proof. Statement (2) is just the dual of (1). To prove (1), consider the diagram

I

ker 5 G H

0
0

5

for some 0 : I → G satisfying 5 ◦ 0 = 0. If ker 5 = 0, then 0 factors through the zero object
so 0 = 0 and 5 is monic. Conversely, if 5 is monic, then 0 = 0 and we see that 0 satisfies the
universal property of ker 5 . �

Definition 1.16. Let C be a category with a zero object. The image of a morphism 5 : G → H

is
im 5 := ker(H � coker 5 )

and the coimage of 5 is
coim 5 := coker(ker 5 ↩→ G).

Remark 1.17. By Exercise 3, the canonical maps

im 5 → H and G → coim 5
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are a monomorphism and epimorphism, respectively.

Remark 1.18. The intuition for the definition comes from viewing the cokernel operation as
taking the quotient.

Remark 1.19. Concretely, the universal property of the image of 5 : G → H is given by the
diagram

I

im 5 H coker 5

0∃!

while, dually, the universal property of the coimage is given by the diagram

ker 5 G coim 5

I
0 ∃!

Construction 1.20. Observe that since the composition ker 5 → G → H is zero (and by the
dual statement), we can build the diagram

ker 5 G H coker 5

coim 5 im 5

0

5

0

and easily see that the compositions

coim 5 → H � coker 5 ker 5 → G → im 5

are zero. In particular, we have an induced map

coim 5 → im 5

fitting in the square

G H

coim 5 im 5

and is unique.

Definition 1.21. LetA be an additive category. We sayA isAbelian if for every G, H ∈ A and
5 ∈ A(G, H),

(1) the kernel and cokernel of 5 exist, and

(2) the canonical map
coim 5 → im 5

from Construction 1.20 is an isomorphism.

Remark 1.22. Condition (2) above is effectively demanding that the first isomorphism theo-
rem holds inA. Indeed, we can think of coim 5 as the quotient G/ker 5 , and (2) thus says we
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have a canonical isomorphism G/ker 5
∼−→ im 5 .

Remark 1.23. Limits can be built from products and equalizers. Furthermore, in an additive
category, any equalizer can be phrased as a kernel, namely eq( 5 , 6) will be ker( 5 − 6). In
particular, since any Abelian category thus admits both equalizers and finite products, it
admits all finite limits. The dual argument shows that Abelian categories also admit all finite
colimits.

Exercise 4. Let 5 : G → H be a morphism in an Abelian category.

(1) Show that if 5 is monic, then
G
∼−→ im 5 .

(2) Dually, show that if 5 is epic, then

im 5
∼−→ H.

(3) Conclude that 5 is an isomorphism if and only if it is monic and epic.

1.3 Appendix: Enriched category theory

Pre-additive categories are a special case of a more general paradigm, enriched categories.
There aremany different formalisms for this atmany different levels of generality; we present
only one, roughly following [Rie14]. The general idea is that an enriched category is like a
category, but where the set of morphisms between two objects is replaced by an object in
some category, called the enrichment base. The first order of business is to specify what kind
of category we wish to have as base for enrichments.

Definition 1.24. A symmetric monoidal category is triple (V ,⊗, 1) where V is a category, ⊗ :
V ×V → V is a functor, and 1 ∈ V is an object, together with the data of specified natural
isomorphisms

E ⊗ F � F ⊗ E, D ⊗ (E ⊗ F) � (D ⊗ E) ⊗ F, 1 ⊗ E � E � E ⊗ 1.

These natural isomorphisms are required to satisfy various coherences which ensure that
any two bracketings of ⊗-products are naturally isomorphic.

Example 1.25. By considering the tensor product over ℤ, the category Ab can be promoted
to a symmetric monoidal category (Ab,⊗ℤ ,ℤ). More generally, for any ring ', the category
Mod' forms a symmetric monoidal category (Mod' ,⊗' , ').

Example 1.26. Any category C admitting finite products yields a symmetric monoidal cat-
egory (C ,×, ∗) where ∗ ∈ C is the terminal object. In particular, Set provides a symmetric
monoidal category (Set,×, ∗).

Example 1.27. Let ' be a commutative ring. The tensor product on Mod' can be lifted to
the category Ch(') of chain complexes in ', to be defined in Section 2.1, to give a functor
⊗' : Ch(') ×Ch(') → Ch('). This provides a symmetric monoidal category (Ch('),⊗' , ').

Definition 1.28. Let (V ,⊗, 1) be a symmetric monoidal category. AV -category C consists of

(1) a set of objects Ob(C),

(2) for every pair of objects (G, H) in C , an object C(G, H) ∈ V ,

(3) for every G ∈ C , a morphism 1G : 1→ C(G, G), and

11



(4) for each triple (G, H, I) of objects in V , a morphism

◦ : C(H, I) ⊗ C(G, H) → C(G, I)

such that for all G, H, I, F ∈ C , the diagrams

C(I, F) ⊗ C(H, I) ⊗ C(G, H) C(I, F) ⊗ C(G, I)

C(H, F) ⊗ C(G, H) C(G, F)

1⊗◦

◦⊗1 ◦
◦

C(G, H) ⊗ 1 C(G, H) ⊗ C(G, G)

C(G, H)

id⊗1G

�
◦

C(H, H) ⊗ C(G, H) 1 ⊗ C(G, H)

C(G, H)
◦

1H⊗id

�

expressing associativity and unitality commute. One also says that C is a category enriched
over (V ,⊗, 1).

Example 1.29. An ordinary category is a category enriched over (Set,×, ∗).

Example 1.30. A 2-category is a category enriched over (Cat,×, [0]).

Example 1.31. A pre-additive category is a category enriched over (Ab,⊗ℤ ,ℤ).

Example 1.32. A dg-category over a commutative ring ' is a category enriched over
(Ch('),⊗' , '). These play a particularly important role in homological algebra, as they are
a computationally convenient presentation for '-linear stable∞-categories.

Example 1.33. A simplicial category is a category enriched over (sSet,×,Δ0).

Remark 1.34. Any V -category C induces an ordinary category C whose objects are just the
objects of C , and whose morphisms are given by

C(G, H) := V (1,C(G, H)).

Definition 1.35. Let (V ,⊗, 1) be a symmetric monoidal category. A V -enriched functor, or
V -functor � : C → D between V -categories consists of

(1) a map Ob(C) → Ob(D), G ↦→ �G,

(2) for each pair of objects (G, H) in C , a morphism

� : C(G, H) → D(�G, �H),

such that for all triples (G, H, I) of objects in C , the diagrams

C(H, I) ⊗ C(G, H) C(G, I)

D(�H, �I) ⊗ D(�G, �H) D(�G, �I)

◦

�⊗� �

◦

1 C(G, G)

D(�G, �G)

1G

1�G �

commute.
Much of category theory can be developed in the enriched setting, including the Yoneda
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lemma, (co)limits of various sorts, and so on. This turns out to be very useful in higher
category theory, as many models of higher categories can be “strictified” by working in an
enriched context. An example of this mentioned before is given by dg-categories.

Categories enriched in Kan complexes give a model for (∞, 1)-categories, and categories
enriched in weak Kan complexes (a.k.a. quasicategories, or ∞-categories) give a model for
(∞, 2)-categories. In practice, this means that doing higher category theory, homotopy the-
ory, etc. can be simplified by knowing some enriched category theory. Indeed, this is the
topic of [Rie14] and partly [RV22].

1.4 Appendix: (Co)limits in terms of (co)products & (co)equalizers

Consider a small diagram � : � → Set in the category of sets. It is a standard result that one
can compute the limit and colimit of � as

lim←−� �
{
(38)8∈� ∈

∏
8∈�

�(8)
���� ∀(! : 8 → 9) ∈ � , �(!)(38) = 3 9

}
and

lim−→� �

(∐
8∈�

�(8)
)
/∼

where ∼ is the equivalence relation generated by (!) (8 , 3) ∼ (8′, 3′) if there exists ! : 8 → 8′

such that �(!)(3) = 3′. Notably, these are compute in terms of the easier-to-understand
products and coproducts in Set.

We wish to generalize this to any category in order to deduce that a category admitting
(co)products and (co)equalizers admits all small (co)limits.

Construction 1.36. Let� : � → C be a small diagram in a categoryC which admits products,
and consider a map ! : 8 → 9 in �. From this, we obtain two maps

�(8) × �(9) �(9)
�(!)◦�1

�2

and these allow us to produce two maps

�(cod !) �(cod !)

∏
8∈�

�(8)
∏

!∈Ar(�)
�(cod !)

�(dom !) �(cod !)

0

1

�cod !

�dom !

�!

�!

�(!)

defined on the !th component by the indicated morphisms. Furthermore, there is a canoni-
cal map

2 : lim←−� →
∏
8∈�

�(8)

induced by the projections lim←−� → �(8), 8 ∈ �. One notes that 0 ◦ 2 = 1 ◦ 2 since this equality
comes down to verifying it on components, where it holds by the commutativity of

lim←−� �(dom !)

�(cod !).

�(!)
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In particular, we have an induced map lim←−� → eq(0, 1).

Proposition 1.37. Let C be a category admitting products and equalizers, and let � : � → C be a
small diagram. Consider the maps∏

8∈�
�(8)

∏
!∈Ar(�)

�(cod !)
0

1

of Construction 1.36. Then lim←−� exists and the canonical map satisfies

lim←−�
∼−→ eq(0, 1).

Proof. In C = Set, this is a triviality: indeed, it is just the statement we made at the start. To
lift it to an arbitrary category C , pick G ∈ C and apply C(G,−). We then have, by the Set case,
that

C(G, eq(0, 1)) C(G,∏8∈� �(8)) C(G,∏!∈Ar(�)�(cod !))

lim←−C(G, �) eq(0∗ , 1∗)
∏

8∈� C(G, �(8))
∏

!∈Ar(�) C(G, �(cod !))

∼ ∼

0∗

1∗

∼

∼ 0∗

1∗

and thus that we have an isomorphism

lim←−C(G, �) � C(G, eq(0, 1))

which is natural in G. We conclude that lim←−� exists and is isomorphic to eq(0, 1). �

Corollary 1.38. Let C be a category. Then the following statements are equivalent.

(1) C admits all small (resp. finite) limits.

(2) C admits equalizers and all small (resp. finite) products.

Let � : C → D be a functor. Then the following are equivalent.

(1’) � preserves all small (resp. finite) limits.

(2’) � preserves equalizers and all small (resp. finite) products.

Proof. Clearly, (1) implies (2) and (1’) implies (2’). On the other hand, (2) implies (1) by Propo-
sition 1.37 (noting that the products are finite whenever � is finite), so only (2’) implies (1’)
remains. However, if � preserves products and equalizers then

�(lim←−�) �(∏8∈� �(8)) �(∏!∈Ar(�)�(cod !))

�(eq(0, 1)) �(∏8∈� �(8)) �(∏!∈Ar(�)�(cod !))

eq(�0, �1) ∏
8∈� �(�(8))

∏
!∈Ar(�) �(�(cod !))

∼

�0

�1

∼ ∼

∼

�0

�1

∼ ∼

�0

�1
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and since lim←−(� ◦ �) � eq(�0, �1), we are done. �
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2 Basics of homological algebra

2.1 Chain complexes & exact sequences

Definition 2.1. Let C be a pre-additive category. A chain complex G• in C is a sequence of
morphisms

· · · → G 8−1 38−1
−−−→ G 8

38−→ G 8+1 → · · ·
such that 38+1 ◦ 38 = 0 for all 8 ∈ ℤ. We denote this by either G• or (G• , 3G).

Remark 2.2. Let C be some category, and regard the set ℤ as a discrete category. A graded
object in C is a functor

ℤ→ C .
Consider the functor B : ℤ→ ℤ given by sending = to = + 1. This induces a shift functor

(1) : Fun(ℤ,C) → Fun(ℤ,C), G• ↦→ G• ◦ B,

which concretely sends a graded object G• in C to the graded object given by G(1)8 = G 8+1.
Now, suppose C is pre-additive. A chain complex in C can be regarded as a graded object

G• : ℤ→ C together with a morphism

3G : G• → G(1)•

satisfying 3G(1) ◦ 3G = 0.

Our first goal is to define the cohomology of a chain complex. There are two obvious ways
of doing this (accepting that one is aware of the “classical” hands-on definition), andwewant
to ensure the two are the same in our formalism.

Construction 2.3. Consider a chain complex G•, and in particular zoom in around a fixed
index 8 ∈ ℤ,

G 8−1 38−1
−−−→ G 8

38−→ G 8+1.

Forming kernels, cokernels, and images, we can produce the diagram

im 38−1 ker 38

G 8−1 G 8 G 8+1

coker 38−1 im 38

)8

0

38−1

0

38

#8

where the induced maps im 38−1 → ker 38 and coker 38−1 → im 38 come from 32 = 0 and
various arrows being monic/epic.

Proposition 2.4. Let )8 and #8 be as in Construction 2.3. Then

(1) )8 is monic, and

(2) #8 is epic.

Proof. Statement (2) is dual to (1). To prove (1), note that

(I → im 38−1 )8

−→ ker 38) = 0
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if and only if

(I → im 38−1 )8

−→ ker 38 ↩→ G 8) = 0

if and only if
(I → im 38−1 ↩→ G 8) = 0

if and only if I → im 38−1 is zero. �

Exercise 5. Spell out the proof of (2) in Proposition 2.4.

Construction 2.5. Let D 8 be the composition ker 38 ↩→ G 8 � coker 38−1. Forming the kernel
and cokernel of D 8 , we can enlarge our previous diagram to

ker D 8

im 38−1 ker 38

G 8−1 G 8 G 8+1

coker 38−1 im 38

coker D 8

)8

0
38−1

0

38

#8

where the dashed maps are induced by the universal properties of the image, kernel, and
cokernel.

Exercise 6. Show that the dashed arrows in Construction 2.5 define isomorphisms

ker D 8
∼−→ im 38−1 and im 38

∼−→ coker D 8 .
Thus, in particular, we finally have the diagram

ker D 8

im 38−1 ker 38

G 8−1 G 8 G 8+1

coker 38−1 im 38

coker D 8

∼

)8

0

38−1

0

38

#8

∼

and using this, we define cohomology. In particular, we compute the image

im D 8 � ker(coker 38−1 � coker D 8)
� ker(coker 38−1 � im 38−1)
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and the coimage

coim D 8 � coker(ker D 8 ↩→ ker 38)
� coker(im 38−1 ↩→ ker 38)
� ker(coker 38−1 → G 8+1)
� coker(G 8−1 → ker 38−1).

Definition 2.6. Let (G• , 3) be a chain complex in an Abelian category. The cohomology of G•
at 8 ∈ ℤ is

H8(G•) := coker(im 38−1 ↩→ ker 38)
or any one of the other canonically isomorphic choices from above. We say G• is exact at 8 ∈ ℤ
if H8(G•) = 0.

Remark 2.7. Explicitly, H8(G•) = 0 is the same as

D 8 = 0 ⇐⇒ coker 38−1 ∼−→ im 38 ⇐⇒ im 38−1 ∼−→ ker 38

which are the conditions one expect from exactness.

Definition 2.8. LetA be an Abelian category. A short exact sequence is an exact sequence of
the form

0→ G → H → I → 0.

Lemma 2.9. A sequence 0→ G
5
→ H is exact if and only if 5 is a monomorphism.

Proof. The sequence is exact if and only if ker 5 = 0, since the image of 0 → G is 0. Since
ker 5 = 0 if and only if 5 is monic, this completes the proof. �

Remark 2.10. It follows that in any short exact sequence

0→ G
5
→ H

6
→ I → 0

the morphism 5 is monic and the morphism 6 is epic (by the dual of Lemma 2.9).

Theorem 2.11: First isomorphism theorem. Consider a short exact sequence

0→ G
5

↩→ H
6
� I → 0

in an Abelian category. Then

G
∼−→ im 5 and coker 5

∼−→ I.

Proof. Lemma 2.9 tells us that 5 is a monomorphism, in which case Exercise 4 tells us that
G
∼−→ im 5 . For the second isomorphism, we use that Exercise 4 provides im 6 � I, and that

exactness provides us a canonical isomorphism ker 6 � im 5 . Thus, compute

I � im 6

� coker(ker 6 ↩→ H)
� coker(im 5 ↩→ H) � coker 5

which completes the proof. �
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2.2 Exactness properties of functors

Definition 2.12. Let � : A → ℬ be an additive functor between Abelian categories. We say
� is left exact if for any short exact sequence

0→ G → H → I → 0

inA, the sequence
0→ �G → �H → �I

in ℬ is exact. We say � is right exact if �op : Aop → ℬop is left exact. We say � is exact if it is
both left exact and right exact.

Theorem 2.13. LetA be an Abelian category, and let 0 ∈ A. Then

A(0,−) and A(−, 0)

are left exact.

Proof. Consider an exact sequence

0→ G
8→ H

?
→ I → 0

inA. ApplyingA(0,−), we must show that

0→A(0, G) 8∗→A(0, H)
?∗→A(0, I)

is exact. Since 8 is a monomorphism, it follows (by definition!) that 8∗ is a monomorphism.
For exactness in the middle, consider a morphism 5 ∈ ker ?∗. Since G � im 8 � ker ?, we then
have the diagram

0

0 G H I 0
5

05 ′

8 ?

so that 5 = 8 ◦ 5 ′ and im 8∗ = ker ?∗. The other functor is dual, sinceA(−, 0) =Aop(0,−). �

Exercise 7. Prove thatA(−, 0) is left exact explicitly.

Theorem 2.14. A functor � : A → ℬ between Abelian categories is left exact if and only if it
preserves finite limits.

Proof. If � is left exact, then it is additive and preserves left exact sequences. In particular, it
preserves finite products and kernels, and therefore equalizers. Since finite limits are built
out of these, it preserves finite limits. Conversely, if it preserves finite limits, then it is additive
since it preserves finite products, and left exact because it preserves kernels. In particular,
we use that

0→ �G → �H → �I

is exact if and only if �G → �H is the kernel of �H → �I. �

Corollary 2.15. A functor � : A → ℬ is right exact if and only if it preserves finite colimits, and it
is exact if and only if it preserves both finite limits and finite colimits.
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Example 2.16. Let - be a topological space, and let G ∈ -. The stalk functor

(−)G : Sh(-,Ab) → Ab

is exact. In particular, (−)G is a left adjoint and hence commutes with all colimits. Further-
more, it is defined by a filtered colimit, and since the forgetful functor Ab → Set preserves
filtered colimits, thismeans (−)G commuteswith finite limits (since filtered colimits commute
with finite limits in Set).

In fact, more is true: a sequence of sheaves

0→ ℱ→ �→ℋ → 0

is exact if and only if for all G ∈ -,

0→ ℱG → �G →ℋG → 0

is exact.

Example 2.17. Let - be a topological space. The global sections functor

Γ(-,−) : Sh(-,Ab) → Ab

is left exact. This is because it is right adjoint to the constant sheaf functor, hence commutes
with all limits.

More generally, given a continuous map 5 : - → ., the functor

5∗ : Sh(-,Ab) → Sh(.,Ab)

is left exact since it has a right adjoint given by 5 −1. This specializes to the previous case
when one sets . = ∗. The observation that these functors are only left exact is the start of the
cohomology theory of sheaves, wherein one studies e.g. the right derived functor

R 5∗ : D(-) → D(.).

Sheaf cohomology is defined by the right derived functor RΓ(-,−).

Example 2.18. Sheafification is an exact functor. This is because on one hand, it is a left
adjoint functor, and on the other hand, it is actually defined by a filtered colimit (if handled
appropriately).

Remark 2.19. We saw thatA(G,−) andA(−, G) are left exact. One says G ∈ A is projective if
A(G,−) is exact, and dually, that G is injective ifA(−, G) is exact.

Exercise 8. Let - be a topological space, let G ∈ -, and consider the stalk functor

(−)G : Sh(-,D) → D .

Using these, we will show, by hand, that under certain conditions, the sheafification functor
is exact.

(1) Suppose we have a functor � : D → Set which preserves finite limits. Show that the
functor

�∗ : Sh(-,D) → Sh(-), ℱ ↦→ � ◦ℱ
preserves finite limits.

(2) Suppose that � in addition preserves filtered colimits and reflects isomorphisms. Show
that the stalk functor commutes with finite limits.
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(3) Show that the sheafification functor (−)† : PSh(-,D) → Sh(-,D) preserves finite
limits. Hint: it suffices to show that it commutes with kernels and binary products;
show this by checking it on stalks.

(4) Check that Mod' satisfies the above conditions.

2.3 Appendix: Quillen exact categories

There are interesting additive categories, particularly in areas like functional analysis, where
only some kernels and cokernels make sense, but not all of them. In situations like this, one
would still like access to some kind of theory. One possible approach to situations of this
type is given by Quillen’s exact categories. Roughly speaking, they are additive categories
wherein certain distinguished maps lie in kernel/cokernel pairs.

Definition 2.20. LetA be an additive category. A kernel/cokernel pair inA is a pair of mor-
phisms

G
5
→ H

6
→ I

such that 5 defines a kernel of 6 and 6 a cokernel of 5 .

Example 2.21. In an Abelian categoryA, the short exact sequences

0→ G → H → I → 0

define all kernel/cokernel pairs.

Definition 2.22. An exact category is a pair (C ,ℰ) where C is additive and ℰ is a class of
admissible kernel/cokernel pairs in C ; we call 5 (resp. 6) in an admissible kernel/cokernel
pair

G
5
→ H

6
→ I

an admissible monomorphism (resp. admissible epimorphism) or an inflation (resp. deflation). The
pair (C ,ℰ) is required to satisfy the following conditions:

(1) The class ℰ is closed under isomorphism, meaning that if we have a diagram

G H I

G′ H′ I′

∼ ∼ ∼

where one row is in ℰ then the other row is in ℰ.

(2) For each G ∈ -, the identity map idG is an inflation and a deflation.

(3) The class of inflations is closed under composition. Dually, the class of deflations is
closed under composition.

(4) The class of inflations is stable under pushouts. Dually, the class of deflations is closed
under pullbacks.

We provide a few arguments to give a taste of the kinds of proofs that are involved when
working with exact categories.

Remark 2.23. The axioms imply that all isomorphisms 5 : G → G are both inflations and
deflations. In particular, we have isomorphisms
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G G 0

G G 0

5

5 −1

and

0 G G

0 G G

5

5 −1

and by the closure of ℰ under isomorphism, we conclude.

Remark 2.24. It also follows that the zero map 0→ G is an inflation, and the zero map G → 0
is a deflation.

Remark 2.25. The data of the inflations or the deflations both determine the class ℰ. Indeed,
supposing we have

G
8→ H

?
→ I

where 8 is an inflation and ? is a cokernel of 8, we may find a deflation ?′ : H → I′ so that we
have an isomorphism

G H I

G H I′

8

∼

?

∼ ∼

8 ?′

where the bottom row is in ℰ, and so the original pair of maps was already in ℰ. Notably,
a morphism is a deflation if and only if it appears as the cokernel of an inflation. A dual
argument shows that a morphism is an inflation if and only if it appears as the kernel of a
deflation.

Proposition 2.26. Let (C ,ℰ) be an exact category, and let G, H ∈ C . Then

G G ⊕ H H
� �

is an admissible kernel/cokernel pair.

Proof. We have a pushout square

0 H

G G ⊕ H�

and since 0→ H is an inflation, it follows that � is an inflation. Since � is the cokernel of �, it
is a deflation and

G G ⊕ H H
� �

is an admissible kernel/cokernel pair, as desired. �

Corollary 2.27. Let (C ,ℰ) be an exact category. Then ℰ contains all split exact sequences.
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One can prove various additional results, but since we do not aim to give an actual intro-
duction here, we leave it for the references. A possible resource is [FS10].

2.4 Appendix: An aside on stable∞-categories

Abelian categories form a convenient setting to formalize the properties of categories like Ab,
and with which to develop homological algebra. However, it has certain deficiencies. The
most natural way to formalize homological algebra is through the use of derived categories
D(A) of Abelian categories A. The way to understand these is as follows: in homological
algebra, one studies properties of chain complexes that only depend on the cohomologies of
the chain complexes. In particular, we would like to think of maps between chain complexes
which induce isomorphisms on the level of cohomology as being “genuine” isomorphisms;
we call such maps quasi-isomorphisms. The derived category D(A) is obtained by taking the
category of chain complexes Ch(A) and formally inverting the quasi-isomorphisms; the pro-
cess of doing this is called localization.

Localizations of categories, which wewill study later, are very hard to control. For exam-
ple, given a small category C and some class of morphisms S in C , the localization C[S−1]
need not be locally small. This is already a sign that localizations are badly behaved in gen-
eral. The issue that comes up in homological algebra is that while the localization of an
additive category does turn out to be additive, the localization of an Abelian category, such
as Ch(A), need not be Abelian. This is bad! After all, we would like to understand their
behaviour in terms of things we already know.

Historically, a proposed solution came in the development of triangulated categories,which
we will also study. Triangulated categories were the invention of Alexander Grothendieck
togetherwith his PhD student Jean-LouisVerdier, and they capture the notion of “homotopy”
Abelian categories. They can be thought of as an analogue of Quillen exact categories, in that
one specifies as part of additional structure a collection of distinguished sequences of maps to
be considered the “homotopy short exact sequences.”

A more systematic proposal came later in the form of stable model categories. However,
the most recent and sophisticated upgrade to the concept is provided by stable ∞-categories.
We give a heuristic explanation of these now.

Definition 2.28. A pointed∞-category is an∞-categorywhich admits a zero element, namely
an element which is both initial and terminal.

Remark 2.29. As an aside, any pointed ∞-category � which admits finite limits and finite
colimits also admits two functorsΣ : �→ � andΩ : �→ � given on objects by the diagrams

G ∗

∗ ΣG

ΩG ∗

∗ G

and furthermore, it turns out that Σ ` Ω. These functors themselves can be used, along with
some other things, to define stability. This is how it is handled in the context of stable model
categories.

Definition 2.30. Let � be a pointed∞-category, and let 5 : G → H be a morphism in �. The
fiber and cofiber of 5 are defined by the diagrams

fib( 5 ) G

∗ H

5

G H

∗ cofib( 5 )

5
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in�whenever they exist. The square above left is called a fiber sequence, and the square above
right is called a cofiber sequence.

With the above definition available, we can make a very simple definition.

Definition 2.31. Let � be a pointed∞-category. We say � is stable if

(1) every morphism in � has a fiber and a cofiber, and

(2) every fiber sequence is a cofiber sequence, and vice versa.

To any ∞-category -, one can associate a 1-category ho(-), called its homotopy category.
The functor- ↦→ ho(-) is left adjoint to the inclusion of 1-categories into∞-categories. Stable
∞-categories � have the property that their homotopy categories ho(�) have a canonical
triangulated structure, induced by the functor Σ : �→ � and with distinguished triangles

G → H → I → ΣG

in ho(�) defined by being those sequences of morphisms which fit into

G H ∗

∗ I ΣG

where both squares are (co)fiber sequences in�. In thisway, stable∞-categories are a natural
enrichment of triangulated categories.

Triangulated categories have a deficiency in that their distinguished triangles do not yield
any universal properties, so there is no goodway to characterize the “homotopy (co)kernels”
that arise from them. Stable ∞-categories fix this as the ∞-categorical framework allows
a genuine “homotopy-theoretic” universal property. Due to the framework being so well-
behaved, they come along with a number of other theoretical benefits, such as cofibers of
exact functors between stable∞-categories being stable. Furthermore, there is a natural way
to promote derived categories into stable∞-categories in a way which recovers the classical
ones after applying ho(−).
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3 Monadicity

Having built up the formalism of Abelian categories a bit, we would like to produce exam-
ples. In order to do this, we will take a detour into the topic of monads, because they will
allow us to easily deduce properties of certain nice subcategories, namely those whose in-
clusions admit a left adjoint, and this will be of interest to us when we want to construct new
Abelian categories from old ones. For this lecture, we follow [Rie17].

3.1 Monads

Definition 3.1. Let C be a category. A monad on C is a monoid in the category of endofunc-
tors on C . This means it is a triple (), �, �) consisting of a functor ) : C → C , a natural
transformation � : 1⇒ ) called the unit, and a natural transformation � : )2 → ) called the
multiplication, such that the diagrams

) )2 )

)

�)

�

)�
)3 )2

)2 )

)�

�) �

�

expressing unitality and associativity commute.

The way to think of monads is as the “shadow” an adjunction on the codomain of the
right adjoint (i.e. the domain of the left adjoint). In particular, we have the following

Proposition 3.2. Consider an adjunction

D C ,
!

'

a � : 1⇒ '!, � : !'⇒ 1.

Let � = '�! and ) = '!. Then (), �, �) is a monad on C .

Proof. Expanding the diagrams we need to check, we get

'! '!'! '!

'!

�'!

'�!

'!�
'!'!'! '!'!

'!'! '!

'!'�!

'�!'! '�!

'�!

and one now sees that the diagram on the left commutes by the triangle identities, and the di-
agram on the right commutes by applying the following lemma to the natural transformation
'� : '!'→ '. �

Lemma 3.3. Consider a natural transformation � : � ⇒ �′ between functors C → D. This defines
a natural transformation (�) as below

Fun(D′,C) Fun(D′,D)

(�)

(�′)

(�)

where (�) : Fun(C ,D) → Fun(D′,D) is the functor � ↦→ ��, similarly for (�′), and the natural
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transformation (�) is defined on components by

(�)� := ��.

Proof. Given a natural transformation � : �⇒ �, we have to verify that the diagram

�� �′�

�� �′�

��

�� �′�

��

commutes. For this, we may reduce to checking on the components for some generic G ∈ C ,
which requires us to check that the diagram

��G �′�G

��G �′�G

��G

��G �′�G
��G

commutes, but this follows by the naturality of � : �⇒ �′. �

Remark 3.4. The above lemma can be seen as a special case of pasting diagrams producing a
single, well-defined composite in a 2-category. Indeed, the two composites in the square of
natural transformations above are the two possible ways of composing the pasting diagram

D′ C D
�

�

�

�

�′

�

and it is a general theorem that such diagrams always yield a unique composite. In the case
of Proposition 3.2, applying this to the diagram

C C

C D D D C

! !

!

'
�

'
�

'

gives another way to obtain the result.

Example 3.5. Let C be a category admitting finite coproducts, and let G0 ∈ C . There is an
adjunction

G0/C C
*

�

`

where * is the forgetful functor, and � is given by G ↦→ (G0 → G0 q G). It is immediate
that � ` * . The induced monad (−)+ : C → C sends G to G0 q G; the unit �G : G → G+
is just the canonical map G → G0 q G, and the multiplication �G : (G+)+ → G is the map
G0 q G0 q G → G0 q G induced by the identities idG0qG and idG0 .

Example 3.6. There is a free-forgetful adjunction

Mon Set
*

�

`
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and the induced monad ) : Set→ Set is the free monoid monad, also known as the list monad.
For a set -, the unit �- : - → )- is G ↦→ (G). The multiplication is given by concatenation.

Example 3.7. Similarly, for a ring ', there is a free-forgetful functor

Mod' Set

*

�

`

which induces a monad '[−] : Set → Set, the free '-module monad. It sends a set - to the
set '[-] of formal sums of elements of - with coefficients in '. The unit �- : - → '[-] is
given by G ↦→ 1 · G, and the multiplication is given by distributing sums.

Example 3.8. Consider the two adjunctions

CHaus Top Set.

* *

� disc.
``

Composing them, we get a monad � : Set → Set, which sends a set - to the Stone–Čech
compactification of the discrete space -, i.e. to the set of ultrafilters on -.

Example 3.9. The (covariant) power set functor P : Set→ Set, sending a set- to its power set
P- and a map 5 : - → . to the image map 5∗ : P- → P., � ↦→ 5 (�), can be equipped with
the structure of a monad. The unit �- : - → P- is the map G ↦→ {G}, and the multiplication
�- : P2- → P- sends a collection of subsetsA to the union ∪A.

Example 3.10. The contravariant power set functor P : Set→ Setop, sending a map 5 : - → .

to the inverse image map 5 −1 : P. → P-, is its own adjoint. Indeed,

Set(-,P.) = Set(-, 2.) � Set(- × ., 2) � Set(., 2-) � Set(.,P-).

In particular, we get the double power set monad P2 : Set→ Set.

Example 3.11. Let (", ·, 4) ∈ Mon be a monoid. Then there is a monad (−) ×" : Set→ Set,
where the monad structure is given by �- : - → - ×", G ↦→ (G, 4), and �- : - ×" ×" →
- ×", (G, <, <′) ↦→ (G, < ·<′). In particular, one gets a monad (−) ×ℕ, which corresponds
to considering “discrete time variables.”

Example 3.12. Let Meas be the category of measurable spaces, with morphisms measurable
functions. There is a monad Prob: Meas→Meas, which sends a measurable space - to the
measurable space Prob(-) of probability measures on -, where the �-algebra is the smallest
one for which the evaluation maps ev� : Prob(-) → [0, 1] are measurable. The unit - →
Prob(-) is given by G ↦→ �G , where the latter is the Dirac measure at G. The multiplication
is given by integration: �- : Prob(Prob(-)) → Prob(-) is given by sending a measure � ∈
Prob(Prob(-)) to the measure

�-(�) : � ↦→
∫

Prob(-)
ev� d�.

Example 3.13. Let ¥ be a field. There is an affine monad, Aff¥ : Set → Set, which is very
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similar to the free '-module monad, with a small modification. It is given by

Aff¥(-) =
{
formal sums

∑
G∈-

�GG such that
∑
G∈-

�G = 1

}
.

The unit �- : - → Aff¥(-) is given by G ↦→ 1 · G, while the multiplication distributes sums.

3.2 Algebras over monads

We saw in Proposition 3.2 that an adjunction induces a monad. One may wonder about the
converse question: does every monad come from an adjunction?

Terminology 3.14. We say a monad (), �, �) on a category C is induced from an adjunction if
there is an adjunction

D C ,
!

'

a � : 1⇒ '!, � : !'⇒ 1.

such that (), �, �) = ('!, �, '�!). In this case, we say ) is induced from ! ` '.
It turns out that the answer is yes, and showing this can be done by introducing an inde-

pendently very interesting category of objects given by the algebras over a monad.

Definition 3.15. Let (), �, �) be a monad on a category C . A )-algebra is a pair (G, 0) of an
object G ∈ C and a morphism 0 : )G → G, such that the diagrams

G )G

G

�G

0

)2G )G

)G G

�G

)0 0

0

commute. A morphism of )-algebras 5 : (G, 0) → (H, 1) is a morphism 5 : G → H such that the
diagram

)G )H

G H

) 5

0 1
5

commutes. This organizes into a category C) called the Eilenberg–Moore category for ), or the
category of )-algebras.

Construction 3.16. Let (), �, �) be a monad on C . We can construct two functors

�) : C → C) , *) : C) → C

as follows. The functor *) is the obvious forgetful functor which sends (G, 0) to G. The free
functor �) sends G ∈ C to the free )-algebra

�)(G) := ()G, �G : )2G → )G)

and a morphism 5 : G → H in C to the morphism of )-algebras

�) 5 := ()G, �G)
) 5
−−→ ()H, �H).

This is a morphism of )-algebras since the diagram
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)2G )2H

)G )H

)2 5

�G �H

) 5

commutes by the naturality of �. Note that the functors �) and*) trivially satisfy*) ◦�) =

).

Proposition 3.17. Let (), �, �) be a monad on C . Then we have an adjunction

C C)
�)

*)

a

inducing) involving the functors from Construction 3.16. In particular, every monad is induced from
an adjunction.

Proof. We have to produce unit and counit natural transformations

� : 1⇒ *)�) = ), � : �)*) ⇒ 1.

In the first case, we use the existing unit � : 1⇒ ). For the counit, we first note that given a
)-algebra (G, 0) ∈ C) , the morphism 0 : )G → G defines a morphism of )-algebras

�)*)(G, 0) = ()G, �G) → (G, 0)

since the diagram

)2G )G

)G G

)0

�G 0

0

commutes. Thus, we let � be given on components by

�(G,0) := 0 : �)*)(G, 0) → (G, 0).

Thus we have the data of a unit and counit; it remains to check that they satisfy the triangle
identities, which are

*)�)*)

*) *)

*)��*)

?

�)*)�)

�) �)

��)�)�

?

and so, applying these to some (G, 0) ∈ C) and G ∈ C , we get

)G

G G

0�G

()2G, �)G)

()G, �G) ()G, �G)

�G)�G

which trially commute by definition of )-algebras and monads, respectively. Thus we have
our adjunction. Now note that *)��) = �, since *)��)G = *)�G = �G , so we see that
(), �, �) = (*)�) , �, *)��)) as desired. �
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Remark 3.18. In particular, we see thatmonads can, in some sense, be thought of as structures
formalizing free-forgetful adjunctions. Indeed, since any adjunction induces a monad, and
any monad induces a free-forgetful adjunction, we see that we can in some sense identify
monads with those adjunctions which are of this form. Of course, a “free-forgetful adjunc-
tion” is not really well-defined on its own, so perhaps it is better to see monads as the way
in which one makes them precise.

Remark 3.19. There is another adjunction one can extract from amonad, formedwith respect
to a category called the Kleisli category of the monad. However, since we will not need it, we
will neglect looking into it in these notes.

Example 3.20. Let ¥ be a field, and consider the affine monad Aff¥. An affine space over ¥ (in
the sense of linear algebra, not algebraic geometry) is an Aff¥-algebra.

Example 3.21. Let C be a category admitting finite coproducts, let G0 ∈ C , and let (−)+ :
C → C be the associated monad G ↦→ G0 q G. An algebra for this monad is an object G ∈ C
together with a structure map 0 : G0 q G → G, so that some diagrams commute. The square
says nothing, but the triangle tells us that the component G → G of 0 is the identity, so the
only new data is a map G0 → G. One sees by inspection that the category of algebras is
given by G0/C itself, and the adjunction inducing the monad is recovered by the category of
algebras.

Example 3.22. Consider the freemonoidmonad) on Set. Then the category of algebras Set)
is equivalent to the category Mon of monoids.

Example 3.23. Let ' be a ring, and consider the free '-module monad '[−] : Set → Set.
Then '[−]-algebras are just left '-modules, i.e. Set'[−] ' Mod'op . An '[−]-module consists
of a set � and a morphism 0 : '[�] → � such that 0 ◦ �� = id� and 0 ◦ �� = 0 ◦ '[0]. The
former condition just means that 0(1 · G) = G for all G ∈ �. Now, define

+ : � × �→ �, · : ' × �→ �,

(G, H) ↦→ 0(1 · G + 1 · H), (A, G) ↦→ 0(A · G).

This turns � into a left '-module. In particular, the commutativity and associativity of +
come from the commutativity of addition of formal sums, as well as the commutative square
in the definition of an algebra. The '-multiplication will give a linear action on � for similar
reasons. To see that � has a zero element, let 0 ∈ � be the image of the empty formal sum;
one easily sees that 0 + G = G for all G ∈ �. The existence of additive inverses is not hard
either.

An '[−]-algebra morphism (�, 0) → (�, 1) provides an '-linear homomorphism �→ �,
when� and � are equippedwith the left '-module structures described above. In particular,
we get a functor Set'[−] → Mod'op , which is clearly faithful. One can check, by explicitly
constructing an '[−]-algebra from a left '-module, that it is also essentially surjective. In
the process, one will also see that the functor is full, hence an equivalence.

Exercise 9. Let ' be a ring (commutative, for simplicity). Consider the adjunction given
by the tensor product ' ⊗ℤ (−) : Ab → Mod' and the forgeful functor * : Mod' → Set.
Abusively, let ' ⊗ℤ (−) also denote the associated monad on Ab. Show that the category of
(' ⊗ℤ (−))-algebras is equivalent to Mod'.

The category of )-algebras is unique in that it is, in a suitable way, terminal amongst
categories with adjunctions that induce ). In order to see this, we will also briefly need to
explain a concept about adjunctions.

30



Proposition 3.24. Let (), �, �) be a monad on C . Then, for any adjunction � ` * inducing ), we
have a unique induced functor

D C)

C

 

*

*)

� �)

`

`

for which  � = �) and*) = * .

Proof. Let � : �* ⇒ 1 be the counit for the adjunction � ` * . Since the adjunction induces
), we have � = *��. Furthermore, since the units of � ` * and �) ` *) agree, both being
� : 1⇒ ), Lemma 3.25 below tells us that if  exists, � is the counit for �) ` *) and �′ is the
counit for � ` * , then  �′ = � .

We need to define  so that*) = * , i.e. so that*) G = *G, G ∈ D. In other words, we
are forced to design  by putting a )-algebra structure on*G, i.e. a map )*G → *G in such
a way that a map 5 : G → H should lead to* 5 being a )-algebra morphism.

On the other hand, for any )-algebra (I, 0) ∈ C) , the morphism 0 : )I → I is given by
the component of the counit � at (I, 0). Thus, we are forced to endow  G with the algebra
structure given by the morphism

� G =  �′G = *�′G .

Therefore, we set  G := (*G,*�). One easily checks that given a morphism 5 : G → H ion C ,
the morphism* 5 is a morphism of )-algebras

 G = (*G,*�′G) → (*H,*�′H) =  H

so we have our desired functor. Since all choices were forced on us, the choice is unique.
Finally, it is clear that  � = �) since  �G = (*�G,*��G) = ()G, �G) = �)G. �

In the above, we use a property of certain diagrams involving adjunctions, indicating to
the below lemma,which explains a few equivalent conditions. In general, a diagramas below
satisfying the listed equivalent properties is called a morphism of adjunctions. As witnessed
in the proof above, they have convenient properties.

Lemma 3.25. Consider a diagram

C C ′

D D′

�

� � �′ �′

 

` `

such that  � = ��′ and �� = �′ . Then the following are equivalent.

(1) �� = �′�, where � and �′ are the units of the adjunctions.

(2)  � = �′ , where � and �′ are the counits of the adjunctions.

(3) The diagram
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D(�G, H) C(G, �H)

D′( �G,  H) C ′(�2, ��3)

D′(�′�G,  H) C ′(�G, �′ H)

 

∼

�

∼

commutes.

Proof. We begin by showing that (1) is equivalent to (3). The two composites in the diagram
in (3) are

5 ↦→ �(� 5 ◦ �G) and 5 ↦→ �′ 5 ◦ �′�G .
(1)⇒ (3). For this, we just compute

�′ 5 ◦ �′�G = �� 5 ◦ �′�G
(1)
= �� 5 ◦ ��G = �(� 5 ◦ �G)

as desired.
(3)⇒ (1). Here, we set H = �G and track what happens to id�G . On one hand, we have

��id�G ◦ ��G = id���G ◦ ��G = ��G

and on the other
�′ id�G ◦ �′�G = id�′ �G ◦ �′�G = �′�G = (�′�)G

so that
∀G ∈ C , ��G

(3)
= (�′�)G =⇒ �� = ��

as desired. Thus, (1) is equivalent to (3).
The equivalence between (2) and (3) is dual. In particular, following the same argument

as above but using the inverses of the adjunction isomorphisms yields the result. �

3.3 Monadic functors

Definition 3.26. Monadic functors are thosewhich are determined by algebras overmonads.

(1) Consider an adjunctionD C ,
!

'

a and let ) be the induced monad on C . The adjunc-

tion ! ` ' is monadic if the canonical functor C → C) is an equivalence.

(2) A functor � : C → D is monadic if it admits a left adjoint ! for which the adjunction
! ` � is monadic.

Here is a simple way to see that knowing a functor is monadic may be useful.

Proposition 3.27. Let* : D → C be monadic. Then* reflects isomorphisms.

Proof. Since * is monadic, we may assume that * = *) and D = C) . An isomorphism
5 : (G, 0) → (H, 1) in C) is merely an isomorphism 5 : G → H in C , since the commutative
diagram for 5 provides one for 5 −1 and vice versa. Since* 5 = 5 , we are done. �

Definition 3.28. Let � : C → D be a functor, and � : � → C be a diagram. We say that �
creates the limit of � in C if
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(1) whenever we have a cone over� in C for which the image inD is a limit cone for �◦�,
the original cone is a limit cone;

(2) whenever a limit cone for � ◦� exists inD, it lifts to a cone in C for � (which must be
a limit cone by (1)).

Theorem 3.29. Let* : D → C be a monadic functor. Then* creates all limits that C admits.

Proof. Since* ismonadic, there is amonad) onC forwhichwehave a commutative diagram

D C)

C

∼

* *)

and furthermore, it is clear that*) creates limits if and only if* does. In particular, we may
assume thatD = C) and* = *) .

Let � : � → C) define some diagram of objects (�8, 08) for which *)� : � → C admits a
limit ! ∈ C , given by some limit cone

� : !⇒ *)�, (�8 : !→ �8)8∈� .

The strategy is simple: we will endow ! with the structure of a )-algebra in such a way that
the �8 define )-algebra maps to (�8, 08). Since � is a diagram in C) , the )-algebra structure
maps 08 define a natural transformation 0 : )*)� ⇒ *)�; given ! : 8 → 9 in �,

)�8 �8

)�9 �9

)*)�!

08

*)�!
0 9

commutes. We can now apply ) to the limit cone � and compose to get a cone

)! )*)� *)�
)� 0

which by univeral property of the limit thus induces a uniquemap 1 : )!→ ! in C for which
the diagrams

)! !

)�8 �8

1

)�8 �8

08

commute. This 1 is our candidate map for making ! into a )-algebra. To have (!, 1) ∈ C) ,
we must check that the left-most faces in the diagrams

! �8

)! )�8

! �8

�8

�! ��8

1

)�8

08
�8

)2! )2�8

)! )�8

)! )�8

! �8

�!

)2�8

)1
��8

)08

)�8

08

1

)�8

08

�8

1
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with the knowledge that the rest of the faces already do. By universal property, we can do this
by checking that it holds after composingwith �8 for all 8 ∈ �, which is the content of the other
faces commuting. We conclude that (!, 1 : )! → !) is a )-algebra, and the commutativity
defining 1 from before means we get a cone

 : (!, 1) ⇒ �.

Wehave therefore proven that*) satisfies condition (2) inDefinition 3.28. It remains to check
condition (1).

Using the same notation as before, suppose we have a cone ( : (!, 3) ⇒ �) ∈ Fun(� ,C))
such that *) : ! ⇒ *)� is a limit cone, and let � : (!′, 1′) ⇒ � be some other cone. Then
*)� : !′⇒ � factors uniquely through*) as

!′ *)�

!

*)�

5 *)

and all we need to do is check that 5 defines a )-algebra morphism (!′, 1′) → (!, 1), i.e. that
the left-most face of the diagram

)!′ )*)�

)!

!′ *)�

!

)*)�

) 5

1′ 0)*)

*)�

5 *)

1

commutes. This follows by the same argument as before since*) is a limit cone. �

Example 3.30. Let ' be a ring (commutative, for sake of simplicity). We have seen that the
forgetful functor Mod' → Set is monadic. In particular, we can deduce that Mod' is com-
plete, which we already knew anyway; nonetheless, this gives an “automatic” way to prove
the result. Using the monadicity of the forgetful functor Mod' → Ab, one can (using a vari-
ant of Theorem 3.29) show that Mod' admits all colimits that Ab admits. Using some more
monadicity results, one can prove quite abstractly that Ab is cocomplete.

Example 3.31. From knowing that Set is complete, Theorem 3.29 can prove that Set is also
cocomplete: one shows that the contravariant power set functor Setop → Set is monadic, and
thus deduce that Setop is complete.

Example 3.32. The forgetful functor CHaus → Set is monadic, so Proposition 3.27 tells us
that a continuous bijective map between compact Hausdorff spaces is a homeomorphism.
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4 More about Abelian categories

This lecture is about some ways to obtain Abelian categories from ones we already know of.
We begin with an easy method, and follow it up with an application of the results of the last
lecture.

4.1 Functor categories

In general, given an object G0 with some property %, the collection of maps G → G0 tends to
inherit the property %. For example, for a set - and a group �, the collection of maps of sets
- → � forms a group. If ' is a ring, then the collection of maps of sets - → ' forms a ring.
The same holds true for categories of functors.

Proposition 4.1. Let C and D be categories, and suppose D admits limits of �-shaped diagrams.
Then Fun(C ,D) admits �-shaped limits.

Proof. Given a diagram � : � → Fun(C ,D), we consider the evaluation functors

∀G ∈ C , evG : Fun(C ,D) → D , � ↦→ �(G)

and define the functor lim←−� by

(lim←−�)(G) := lim←−(evG ◦�).

We note that this defines a functor since for any 5 : G → H in C , we obtain a natural transfor-
mation

evG ⇒ evH
given, for a natural transformation � : �⇒ �, by

evG(�) �(G) �(H) evH(�)

evG(�) �(G) �(H) evH(�)

evG(�) �G

�( 5 )

�H evH(�)
�( 5 )

and so induces a natural transformation evG ◦� → evH ◦�. One defines the map

(lim←−�)( 5 ) : (lim←−�)(G) → (lim←−�)(H)

as the image of this natural transformation under the functor

lim←− : Fun(� ,D) → D

which exists sinceD admits �-shaped limits. �

Exercise 10. Let C andD be categories.

(1) Show that (−)op determines a functor Fun(C ,D)op → Fun(Cop ,Dop).

(2) Prove that the functor in (1) is an isomorphism of categories.

(3) Deduce fromProposition 4.1 that ifD admits �-shaped colimits, thenFun(C ,D) admits
�-shaped colimits.

(4) Prove the result in (3) by hand following the proof of Proposition 4.1.
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Theorem 4.2. LetA be an additive category, and let C be some arbitrary category. Then Fun(C ,A)
is additive. Furthermore, ifA is Abelian, then Fun(C ,A) is Abelian.

Proof. We promote Fun(C ,A) into a pre-additive category by defining �+�, for �, � : �⇒ �,
by

(� + �)G = �G + �G .

This defines a natural transformation, since if ( 5 : G → H) ∈ C then

(� + �)H ◦ �( 5 ) = �H ◦ �( 5 ) + �H ◦ �( 5 ) = �( 5 ) ◦ �G + �( 5 ) ◦ �G = �( 5 ) ◦ (� + �)G .

It is clear that this makes Fun(C ,A) into a pre-additive category. It now follows that
Fun(C ,A) is additive by applying Proposition 4.1.

If we assume thatA is Abelian, then Proposition 4.1 and its dual specialize to tell us that
Fun(C ,A) admits kernels and cokernels, which for some � : �⇒ � are given by

ker� : G ↦→ ker�G , coker� : G ↦→ coker�G .

We see in particular that the image and coimage are given by

im � : G ↦→ im �G , coim � : G ↦→ coim �G

and therefore the map
coim �→ im �

must be an isomorphism, since it is an isomorphism on its components byA being Abelian.
�

4.2 Reflective & Giraud subcategories

Consider two categories C and D together with a fully faithful functor % : C ↩→ D. One
might wonder what properties of D are inherited by C and vice versa. For example, since
% is fully faithful, it reflects isomorphisms, and so any objects in C which are isomorphic
in D are isomorphic in C too. On the other hand, % need not preserve epimorphisms nor
monomorphisms, except for split ones, and similarly, need not preserve limits nor colimits.
So, we need more data in order to deduce properties about C from properties ofD.

Last lecture, we saw that monadic functors create limits. We will now apply this to a
particularly interesting example, namely that of reflective subcategories. We begin with some
general properties of adjoints, as well as of reflective subcategories.

Lemma 4.3. Consider an adjunction

D C ,
!

'

a

with unit � and counit �.

(1) ' is faithful if and only if every component of � is an epimorphism.

(2) ' is fully faithful if and only if � is a natural isomorphism.

In the case of (2), ! is essentially surjective and the natural transformation !� : !⇒ !'! is a natural
isomorphism.
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Proof. We have natural transformations

C(G,−) → D('G, '−) ∼−→ C(!'G,−)

the composite of which corresponds to the unit map �G : !'G → G under the Yoneda
lemma. In particular, �G is an epimorphism (isomorphism) if and only if the compos-
ite C(G,−) → C(!'G,−) is a monomorphism (isomorphism) if and only if the morphism
C(G,−) → D('G, '−) is a monomorphism (isomorphism), i.e. ' is faithful (fully faithful).

For the final claim, suppose that ' is fully faithful. We then have G � !('(G)) so that ! is
essentially surjective; the triangle identity

!'!

! !

�!!�

sandwiches !� between the natural isomorphisms id and �!, so that !� is a natural isomor-
phism. �

Exercise 11. Show that ' is full if and only if every component of � is a split monomorphism.
Furthermore, dualize the above results.

Lemma 4.4. Let ' : C → D be a functor admitting a left adjoint ! : D → C . Then ' preserves
monomorphisms.

Proof. Suppose 5 is a monomorphism, and that we have 6, 6′ : I → 'G such that

I 'G 'H
6

6′

' 5

commutes. Applying !, we transpose this to

!I !'G !'H

!I G H

!6

!6′

!' 5

�G �H
5

and now, since 5 is monic, we have that

�G ◦ !6 = �G ◦ !6′.

Thus 6 = 6′, since the map

D(I, 'G) ∼−→ C(!I, G), ℎ ↦→ �G ◦ !ℎ

is a bijection. �

Definition 4.5. Let C ↩→ D be a fully faithful functor. We say it is reflective if it has a left
adjoint, called the reflection. A reflective subcategory of D is a full subcategory for which the
inclusion is reflective.

Remark 4.6. In otherwords, � : C ↩→D is reflective if it has a left adjoint� forwhich the counit
� : 1 ⇒ �� is an isomorphism. One thinks of � as an inclusion and of � as a projection onto
C . The counit being an isomorphism then says that including then projecting does nothing.
When one regards C as a genuine full subcategory ofD, this is somewhat more literal: the
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counit is then an isomorphism G
∼−→ �G inD for all G ∈ C .

Proposition 4.7. Suppose � : C ↩→ D is reflective, and let 5 : G → H be a morphism in C . Then 5

is a monomorphism if and only if �( 5 ) is a monomorphism.

Proof. By Lemma 4.4, � preserves monomorphisms since it is a right adjoint, so one direction
is done. Hence, suppose �( 5 ) is a monomorphism, and that we have morphisms 6, 6′ : I → G

such that

I G H
6

6′

5

commutes. Applying �, we have

�(I) �(G) �(H)
�(6)

�(6)′
�( 5 )

and since �( 5 ) is monic, we see that �(6) = �(6′). Since � is fully faithful, the map

C(I, G) → D(�(I), �(G))

is injective, and therefore 6 = 6′. �

Lemma 4.8. Let � : C ↩→ D be a reflective fully faithful functor with reflector � : D → C . An
object H ∈ D is in the essential image of � if and only if �H : H → ��(H) is an isomorphism.

Proof. By universal property of the unit, if G ∈ C and we have a morphism 5 : H → �(G), then
we have a diagram

H ��(H)

�(G).

�H

5
6′

Since � is fully faithful, there is some unique 6 : �(H) → G such that �(6) = 6′. Applying � to
the above diagram, we have

�(H) ���(H) �(H)

��(G) G

�(�H)
∼

�( 5 )

�(6′)

∼
��(H)

6

∼
�G

and from this it is clear that

�( 5 ) iso. ⇐⇒ �(6′) iso. ⇐⇒ 6 iso. ⇐⇒ 6′ iso. ⇐⇒ 5 iso.

Now, if �H is an isomorphism, there is nothing to do. Conversely, if 5 is an isomorphism,
then by the above, 6′ is also an isomorphism, so �H is an isomorphism. �

Proposition 4.9. The inclusion � : C ′ ↩→ C of a reflective subcategory is monadic. That is, leting
! : C → C be the induced monad, there is a canonical equivalence of categories C ′ ' C ! given by the
functor  := �! ◦ �.

Proof. An !-algebra in C consists of an object G ∈ C together with a map 0 : !G → G. By
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definition, 0 is a retract of the unit �G : G → !G, i.e. 0 ◦ �G = idG . We first show that in this
case, we also have �G ◦ 0 = id!G . Note that � is a natural isomorphism since it is built from the
counit of the adjunction (involving a fully faithful right adjoint) inducing !. Thus, !� = �!,
since both are right inverses to � by definition (the unitality condition for a monad). Now,
by naturality,

!G !2G

G !G

0

�!G

!0

�G

so
�G ◦ 0 = !0 ◦ �!G = !0 ◦ !�G = !(0 ◦ �G) = id!G

as desired. Therefore, if G ∈ C admits an !-algebra structure, the unit component �G nec-
essarily must be invertible. However, this is also a sufficient condition: the above naturality
diagram shows that if �G is invertible, then �−1

G : !G → G gives G the structure of an !-algebra.
Now, an object G is in the essential image ofC ′ ↩→ C if and only if �G is an isomorphism. In

particular,  is essentially surjective. That  is fully faithful now follows just by the naturality
of �. �

Theorem 4.10. Let % : C ↩→D be reflective with reflection & : D → C , and suppose � : � → C is
a diagram.

(1) If the colimit of % ◦ � exists, then the colimit of � exists and is given by & lim−→(% ◦ �).

(2) If the limit of % ◦ � exists, then the limit of � exists and is given by & lim←−(% ◦ �).

Proof. (1) Since & is a left adjoint, it preserves colimits. In particular, we have isomorphisms

C(& lim−→(% ◦ �), G) � C(lim−→(% ◦ �), %G) � lim←−C(% ◦ �, %G) � lim←−C(�, G)

which are functorial in G ∈ C .
(2) By Proposition 4.9, the inclusion C ↩→D is a monadic functor. Thus, by Theorem 3.29,

it creates all limits whichD admits. In particular, if lim←−(% ◦ �) exists, then lim←−� exists, and
so we can use that % is a right adjoint to see that

& lim←−(% ◦ �) � &% lim←−� � lim←−�

as desired. �

Reflective subcategories are interesting to us because the above property, with a small
modification, allowsus to deduce that certain subcategories ofAbelian categories areAbelian,
with predictable limits and colimits. This is one of the standard “abstract” ways to show that
e.g. the category of sheaves of Abelian groups Sh(-,Ab) on a space - is an Abelian category,
or more generally, that ModO- is an Abelian category for a ringed space (-,O-).
Definition 4.11. Let � : D ↩→ C be a reflective subcategory. We say it is Giraud if the left
adjoint preserves finite limits.

Theorem 4.12. Let � : ℬ ↩→ A be a Giraud subcategory of an Abelian category A. Then ℬ is
Abelian.

Proof. The pre-additive structure onA induces one onA. SinceA is Abelian, we see that ℬ
is additive and admits all kernels and cokernels.
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Let � : A → ℬ be the reflector, and let 5 : G → H be a morphism in ℬ. We need to check
that

coim 5
∼−→ im 5 .

However, for this, note that we have canonical isomorphisms

coim 5 = coker(ker 5 ↩→ G)
� � coker(ker �( 5 ) ↩→ �(G))
= � coim �( 5 )
� � im �( 5 )
= � ker(�(H)� coker �( 5 ))
� ker(��(H)� � coker �( 5 ))
� ker(H � coker 5 ) = im 5

as desired. �

4.3 Generators & resolutions in Abelian categories

Definition 4.13. Let C be a category. A family of generators for C is a set of objectsU ⊆ Ob(C)
which can separate morphisms in the sense that they satisfy the following condition:

★ Let 5 , 6 : G → H be morphisms in C . If for every morphism ℎ : D → G, D ∈ U , we have
5 ◦ ℎ = 6 ◦ ℎ then 5 = 6.

In other words, if 5 ≠ 6 then there is some morphism ℎ0 : D → G with D ∈ U such that
5 ◦ ℎ0 ≠ 6 ◦ ℎ0.

The following proposition is the motivation for the terminology.

Proposition 4.14. Let C be a locally small category which admits small coproducts, and letU be a
small set of objects in C . Then the following are equivalent.

(1) The setU is a generating family.

(2) For all G ∈ C , the canonical morphism ∐
D∈U

∐
D→G

D → G

is an epimorphism.

(3) For all G ∈ C , there is some family of sets {�D}D∈U and an epimorphism∐
D∈U

∐
8∈�D

D � G.

Proof. (1)⇒ (2). Just observe that having a commutative diagram∐
D∈U

∐
D→G

D G H
5

6

is the same as saying that for all D ∈ U and ℎ ∈ C(D, G)we have 5 ◦ ℎ = 6 ◦ ℎ.
(2)⇒ (3). This is clear.
(3)⇒ (1). Suppose we have 5 , 6 : G → H such that 5 ◦ A = 6 ◦ A for all D ∈ U , A : D → G.
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Let �D,8 be the canonical inclusion of D into the coproduct, let ℎ be the epimorphism, and set
ℎD,8 := ℎ ◦ �D,8 , so we in particular have a diagram

D

∐
D∈U

∐
8∈�D D G H

�8 ,D

ℎ8 ,D

ℎ
5

6

which commutes. We see that 5 ◦ ℎ = 6 ◦ ℎ, so that 5 = 6 since ℎ is an epimorphism. �

Definition 4.15. We say that an object D ∈ C is a generator for C if {D} is a family of genera-
tors.

Example 4.16. The one-point set {∗} is a generator for the category Set of (small) sets.

Example 4.17. Let ¥ be a field. Then ¥ ∈ Vect¥ is a generator. In particular, if + is a vector
space over ¥, then a linear map ¥→ + is just a choice of a vector E ∈ + , and we clearly have
an epimorphism ∐

E∈+
¥ · E � +

so that the above proposition implies ¥ is a generator. The same statement holds more gen-
erally when ¥ is replaced by a ring ' and Vect¥ by Mod'.

Now, generators in the context of an Abelian category let us create resolutions of objects.
For simplicity, we only handle the case with one generator, but of course this restriction is
artificial. These resolutions can be useful when the generator is nice.

Proposition 4.18. Consider a locally small Abelian category A admitting small coproducts, and
suppose D ∈ A is a generator. Let G ∈ A. Then there is an exact sequence of the form

· · · →
∐
9∈�1

D →
∐
9∈�0

D � G → 0

inA.

Proof. The idea for this is simple, and essentially follows by induction. First, we use Propo-
sition 4.14 to produce an epimorphism and form an exact sequence

0→ ker�0 ↩→
∐
9∈�0

D
50
� G → 0.

Now, we pick an epimorphism onto ker 50, and take its kernel to get an exact sequence

0→ ker 51 ↩→
∐
9∈�1

D
51→

∐
9∈�0

D
50
� G → 0.

Continuing like this indefinitely, one obtains the result. �

4.4 Appendix: Grothendieck categories

Some Abelian categories are nicer than others, and the nicest of them are typically the mod-
ule categories Mod' over a ring '. A general Abelian category can be used to phrase many
results of homological algebra, but it turns out that they are usually not enough in appli-
cations. For example, in homological algebra one often needs to take a resolution of one’s
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objects in order to calculate, but no such thing is guaranteed to exist in an arbitrary Abelian
category. Grothendieck isolated a few properties that can be used to solve this.

Definition 4.19. LetA be an Abelian category. We sayA is a Grothendieck category if it has a
generator, and satisfies the following exactness condition:

(Ab5) A admits all small colimits, and for any filtered category � the colimit functor

Fun(� ,A)
lim−→(−)−−−−→ A

preserves finite limits, i.e. is exact.

Remark 4.20. Concretely, if we are given a filtered category � and an �-diagram of exact se-
quences

{0→ G8 → H8 → I8 → 0}8∈�
then the sequence

0→ lim−→
8∈�

G8 → lim−→
8∈�

H8 → lim−→
8∈�

I8 → 0

is exact.

Remark 4.21. A category � is filtered if any finite subcategory has a join. That is, if for any
finite category � with a functor � → �, there is an extension to a functor �⊲ → �. These are the
analogues of directed posets, and a poset is directed if and only if it is filtered as a category.

Proposition 4.22. Let � : ℬ ↩→A be a Giraud subcategory of a Grothendieck category. Then ℬ is a
Grothendieck category.

Proof. We have seen in Theorem 4.12 that ℬ is Abelian. It remains to check that it has a
generator, and that filtered colimits are exact, i.e. (Ab5). Denote by � : A → ℬ the left
adjoint of �, and let D ∈ A be a generator forA. Then �(D) is a generator forℬ. In particular,
by the dual of Lemma 4.4, the functor � preserves epimorphisms; therefore, for G ∈ ℬ, we
can produce epimorphisms∐

8∈�
D � �(G) inA {

∐
8∈�

�(D)� ��(G) ∼−→ G in ℬ .

We now need to check (Ab5). Since colimits commute with colimits, the colimit functor is
already right exact, so we need only check that it preserves monomorphisms. So, let � be a
filtered category, and consider two diagrams �, �′ : � → ℬ with a monomorphism � ↩→ �′

(this means that each morphism �(8) → �′(8) is a monomorphism). Since A is (Ab5), we
know that

lim←−(� ◦ �) ↩→ lim←−(� ◦ �
′).

However, colimits in ℬ are calculated by applying � to the above diagram, and since ℬ is a
Giraud subcategory, � preserves finite limits, hence kernels. Therefore, the induced map

lim←−� � � lim←−(� ◦ �) → � lim←−(� ◦ �
′) � lim←−�

′

is a monomorphism. �

The following is the reason to care about Grothendieck categories. We will not prove it
for now.

Theorem 4.23. LetA be a Grothendieck category. Then
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(1) A is locally small,

(2) A admits all small limits, and

(3) A has enough injectives.

4.5 Appendix: Abelian categories with a compact projective generator

LetA be an Abelian category. Recall that an object ? ∈ A is projective ifA(?,−) :A → Ab is
an exact functor. We will prove a theorem which allows us to recognize module categories
in terms of the existence of a compact projective generator. We defined what a generator is
in Definition 4.15, so we will now say what a compact object is in the context of an additive
category.

Construction 4.24. LetC be an additive category, let G ∈ C , and let {G8}8∈� be some collection
of objects indexed by a small set �. Whenever the coproduct exists, consider the maps

�8 : G8 →
∐
8∈�

G8 .

We construct a map ∐
8∈�
C(G, G8) → C(G,

∐
8∈�

G8)

by letting it be given on components by the maps

C(G, G8) → C(G,
∐
8∈�

G8), 5 ↦→ �8 ◦ 5

given by composition with the canonical inclusion �8 .

Definition 4.25. Let C be an additive category. We say that an object G ∈ C is compact if for
any small set � and objects {G8}8∈� , the map∐

8∈�
C(G, G8) → C(G,

∐
8∈�

G8)

from Construction 4.24 is an isomorphism.

Remark 4.26. Another formulation of this is that for any small set � and objects {G8}8∈� , any
map from G to the coproduct will factor uniquely through a finite subset. That is, there is
some finite � ⊆ � such that

G
∐

8∈� G8⊕
9∈� G 9

∃!

commutes. That is, any map to a coproduct is defined by a “finite amount of data.”

Remark 4.27. This notion of compactness is unique to additive categories, and is not really
the “right” notion outside this context. In an arbitrary category C , one is instead interested
in the analogous notion but with coproducts replaced by filtered colimits.

Theorem 4.28. Let A be a locally small Abelian category which admits small coproducts, and let
? ∈ A. Consider the functor

A(?,−) :A →ModEnd(?)
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fromA to the category of right modules over End(?) :=A(?, ?).

(1) If ? is a generator, thenA(?,−) is faithful.

(2) If ? is a compact projective generator, thenA(?,−) is an equivalence.

Proof. We must investigate, for all G, H ∈ A, the homomorphism

A(G, H) →ModEnd(?)(A(?, G),A(?, H)).

(1) To see that it is injective, consider a morphism 5 : G → H such that 5∗ : A(?, G) →
A(?, H) is the zero morphism. We want to use the Yoneda lemma to deduce that 5 = 0, so
pick I ∈ A and, using the fact that ? is a generator, pick an epimorphism � :

∐
8∈� ? � I.

Then

A(I, G) A(I, H)

A(∐8∈� ?, G) A(∐8∈� ?, H)

∏
8∈�A(?, G)

∏
8∈�A(?, H)

5∗

�∗ �∗

5∗

∼ ∼

( 5∗)

commutes, and the bottom horizontal arrow is the zero map by assumption. We conclude
that the natural transformation 5∗ : A(−, G) → A(−, H) is zero, so that 5 = 0 by the Yoneda
lemma.

(2)(i) To have fullness, suppose we have an End(?)-linear homomorphism

! :A(?, G) → A(?, H).

Using the fact that ? is a generator, we can build an exact sequence for G in terms of ?,

0→ ker�
�
↩→

∐
8∈�

?
�
� G → 0.

Maps G → H can be described in terms of this, through universal property:

0 ker�
∐

8∈� ? G 0.

H

�

0

�

We build the solid vertical arrow. Let 58 : ? → G8 be the 8th component of �. That is, if
�8 : ? → ∐

8∈� ? is the canonical inclusion, we set 58 := � ◦ �8 . Using !, we get maps 68 :=
!( 58) : ? → H which define a map 6 :

∐
8∈� ? → H. We need to see that 6 ◦ � is zero as in the

above diagram. For this, since ? is a generator, it suffices to check that for all 0 : ? → ker�,
we have 6 ◦ � ◦ 0 = 0. Using the compactness of ?, we factorize:

?
⊕

9∈�0 ? ?

0 ker�
∐

8∈� ? G 0.

H

0

ℎ0 �9

� 9 59

� �

6
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and setting ℎ0,9 := � 9 ◦ ℎ0 , we see that it suffices to check that for all 9 ∈ �0 ⊆ �, 6 ◦ � 9 ◦ ℎ0,9 = 0.
To check this, we use End(?)-linearity to see that

6 ◦ � 9 ◦ ℎ0,9 = 69 ◦ ℎ0,9 = !( 59 ◦ ℎ0,9) = 0

as desired. We conclude thatA(?,−) is fully faithful, since the above induces amap 5 : G → H

and one easily checks that it recovers ! using the projectivity and compactness of ?.
(2)(ii) We show that A(?,−) is essentially surjective. Let " ∈ ModEnd(?), and choose a

free resolution
· · · →

∐
9∈�1

End(?) →
∐
9∈�0

End(?)� " → 0.

Since ? is compact, we have natural isomorphisms

· · · ∐
9∈�1 End(?) ∐

9∈�0 End(?) " 0

· · · A(?,∐9∈�1 ?) A(?,∐9∈�0 ?) " 0

∼ ∼
making the above diagram commute, and by the fully faithfulness ofA(?,−) we obtain an
exact sequence

· · · →
∐
9∈�2

? →
∐
9∈�1

? →
∐
9∈�0

?.

Taking the cokernel of the right-most map, we have an exact sequence

· · · →
∐
9∈�1

? →
∐
9∈�0

? � G → 0

and now, since A(?,−) is exact since ? is projective, the uniqueness of cokernels means
A(?, G) � ". We conclude thatA(?,−) is both fully faithful and essentially surjective, hence
an equivalence. �

Exercise 12. In the proof of Theorem 4.28, we made two unjustified statements. They are the
following:

(1) In the proof that A(?,−) is full, the constructed function 5 induces a morphism 5∗ :
A(?, G) → A(?, H), and this agrees with the original map !.

(2) In the proof that A(?,−) is essentially surjective, we use that any faithful functor � :
A → ℬ between Abelian categories reflects exact sequences.

Prove these statements.

Remark 4.29. There is a version of Theorem 4.28 for stable ∞-categories which is originally
due to Schwede& Shipley in [SS03] in the setting of stablemodel categories, later generalized
to the aforementioned setting by Lurie in [Lur17, Thm. 7.1.2.1].

Remark 4.30. There is almost a version of Theorem 4.28 for triangulated categories. Hoshino,
Kato, & Miyachi in [HKM02] prove that a triangulated category T with a compact generator
B ∈ T satisfying ∀8 > 0, T (B, B[8]) = 0, admits a t-structure whose heart is equivalent to
ModEnd(B). In general, however, this kind of thing is typically the best you can do with just
triangulated categories. We will explain all this terminology in future lectures.
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5 Localizations of categories

Localization is the procedure by which one formally inverts morphisms in a category. It’s
a “categorification” of the analogous process for rings, and various deeply interesting cat-
egories in homological algebra and homotopy theory are formed in this way. We mainly
follow [Kra22] and [KS06].

5.1 Weak & strict localizations

Definition 5.1. Let C be a category, and let, ⊆ MorC be a set of morphisms in C . A weak
localization of C with respect to , is a category C, together with a functor & : C → C,
satisfying the following properties:

(1) For any 5 ∈ S, the morphism &( 5 ) in C, is invertible.

(2) For any category ℰ, composition with & induces an equivalence

(◦&) : Fun(C, ,ℰ)
∼−→ Fun, (C ,ℰ)

where Fun, (C ,ℰ) denotes the full subcategory of Fun(C ,ℰ) spanned by those functors
sending morphisms in S to invertible morphisms in ℰ.

We say that the pair (C, , &) is a strict localization if the equivalence in (2) is an isomorphism.
Aweak localization is unique up to canonical equivalence, while a strict localization is unique
up to canonical isomorphism.

Remark 5.2. The universal property of the localization means that given any functor � : C →
ℰ sendingmorphisms in, to isomorphisms inℰ, there is an essentially unique factorization

C

C, ℰ
&

�

�′

�

through & : C → C, up to natural isomorphism. In the strict case, the difference comes
down to demanding that �′ is genuinely unique and that the diagram commutes on the nose,
i.e. that �′ ◦& = �. Clearly, any strict localization is also a weak localization.

Lemma 5.3. Let C be a category, and let , be some collection of morphisms in C . Then a pair
(C, , & : C → C, ) is a strict localization of C with respect to , if and only if it satisfies the
following a priori weaker property described above: for all categories ℰ with a functor � : C → ℰ
inverting morphisms in, , there is a unique functor �′ : C, → ℰ such that � = �′ ◦&.

Proof. Condition (2) of being a strict localization, the isomorphism (◦&) : Fun(C, ,ℰ)
∼−→

Fun, (C ,ℰ), clearly implies the “weaker” condition, since it is just a specialization to the
objects of the aforementioned categories. For the converse, we are given that (◦&) is bi-
jective on objects, and need to show that it is fully faithful. For this, suppose we have
�, � ∈ Fun, (C ,ℰ) and a natural transformation � : � ⇒ �. This corresponds uniquely
to a functor �′ : C → Fun(2,ℰ) under the isomorphisms of categories

Fun(2,Fun(C ,ℰ)) � Fun(2 × C ,ℰ) � Fun(C ,Fun(2,ℰ)).

Explicitly, �′ is given by the assignment C 3 G ↦→ (�G �G→ �G) on objects, and on morphisms
5 : G → H is sent to the square
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�G �G

�H �H

�G

�( 5 ) �( 5 )
�H

and in particular, it is clear that for all 5 ∈ , , the morphism �′( 5 ) in Fun(2,ℰ) is invertible.
Therefore, we obtain a unique functor �′ : C, → Fun(2,ℰ) such that �′ = �′ ◦ &. Now �′

corresponds uniquely to a natural transformation � : �& ⇒ �& in Fun(C, ,ℰ) for which
� = &�. �

Remark 5.4. The above argument actually has almost nothing to dowith the specific situation
at hand. Instead, it is really a statement about particular 2-categories.

Exercise 13. Let C be a category, and, ⊆ Mor(C). Let (C, , &) be a strict localization of C
with respect to, . Show that & is bijective on objects. Hint: consider the category C ′ whose
objects are those of C , and where all objects are isomorphic by a unique isomorphism.

Exercise 14. Prove the rest of Remark 5.2.

Notation 5.5. The localization of a category C with respect to , is variously denoted C, ,
C[,−1], and,−1C .

Since strict localizations are automatically also weak localizations, it suffices to construct
strict ones in all situations of interest in order to know that all weak localizations also exist.
It turns out that this is possible, through a construction originally due to Gabriel & Zisman.
The idea is that we want morphisms in C[,−1] to represent fractions

51B
−1
1 52B

−1
2 · · · 5=B−1

= ,

where the 58 are just “arbitrary” morphisms and B8 ∈ , . If there was some commutation
relationship, this could be collapsed down to just 5 B−1, which we’ll look at later, but in gen-
eral there is no way around having arbitrarily long chains. This same issue is present when
localizing noncommutative rings.

Construction 5.6. LetC be a category, and let, ⊆ Mor(C). We construct a categoryC[,−1]
and functor & : C → C[,−1] as suggested in [Kra22]. Consider the quiver C with vertices
Ob(C), and edges given by the disjoint union of Mor(C) where,− := {B−1 : H → G | , 3
B : G → H} consists of edges labeled B−1 for all B ∈ , , and which are reversed in direction
compared to their corresponding element of, . Let P be the path category of C, and denote
the composition (i.e. concatenation) in P by ◦P . We let C[,−1] be the quotient ofP given by
the equivalence relation on the morphisms generated by the following relations:

(1) 6 ◦P 5 = 6 ◦ 5 for all 5 : G → H, 6 : H → I in C .

(2) Let idPG denote the identity of G in P . Then we demand idPG = idG .

(3) For all, 3 B : G → H, we have B−1 ◦P B = idG , B ◦P B−1 = idH .

The functor& : C → C[,−1] is the identity on objects, and onmorphisms is the composition

Mor(C) ↩→ Mor(C) q,− → Mor(P)� Mor(C[,−1]).

Explicitly, this means the following: the objects of C[,−1] are just the objects of C , while a
morphism from G to H is an equivalence class of a zigzagging sequence of morphisms, e.g.

G −→ • ∈,←− • −→ · · · ∈,←− • −→ H.

Two such sequences are equivalent if they can be related
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(1’) by composing adjacent arrows going the same direction,

(2’) by removing identities,

(3’) by removing instances of • B−→ • B←− • and • B←− • B−→ • whenever B ∈, , or

(4’) through the existence of a commutative diagram

• • · · · •
G H.

• • · · · •

∈, ∈,

∈, ∈,

One regards the “empty zigzag” as the identity morphism. The functor & just sends a mor-
phism 5 : G → H to the “trivial zigzag” 5 : G → H.

Note that this category can fail to be locally small: one can imagine non-equivalent mor-
phisms from G to H in C[,−1] having any object of C as an intermediate at some point, so
that C[,−1](G, H)may have as many morphisms as C does objects.

Theorem 5.7. Let C be a category, and, ⊆ Mor(C). Then the pair (C[,−1], &) from Construction
5.6 is a strict localization of C with respect to, .

Proof. Observe that for all B ∈, , the morphism &(B) is invertible. Indeed, we have

(• B−→ •) ◦ (• B←− •) = • B←− • B−→ • = • id−→ •.

with the other composition being the same. Let ℰ be a category, and suppose we have a
functor � : C → ℰ which inverts elements of , . We need to produce a unique functor
�′ : C[,−1] → ℰ for which � = �′&. For each object G ∈ Ob(C[,−1]) = Ob(C), we are thus
forced to set �′G := �G since & is the identity on objects. For morphisms, observe that every
zigzag can be broken up as

• −→ • ←− • · · · • ←− • −→ • = (• → •) ◦ (• ← •) ◦ · · · ◦ (• ← •) ◦ (• → •).

In particular, the value of �′ at such a zigzag is determined by what it does to morphisms
• → • and • ← •. The former are exactly the morphisms in the image of &, hence we have
�′(• → •) = �(• → •). For a morphism (B : G → H) ∈, , as remarked, we have that

&(B)−1 = (H B←− G)

and every zigzag of the form • ← • arises in this way. In particular, forcibly we must have
�′(&(B)−1) = (�′&(B))−1. This completely determines the functor �′ in a unique way; in par-
ticular, the value is given by

�′(•
51−→ • B1←− · · · B=←− •

5=+1−→ •) = �(•)
� 51−→ �(•) �(B1)

−1

−→ · · · �(B=)
−1

−→ �(•)
� 5=+1−→ �(•).

By Lemma 5.3, we are done, recognizing that the above is a well-defined functor since the
value is invariant under the operations (1’)–(3’) described in Construction 5.6. �

5.2 Calculus of fractions

The construction of an arbitrary localization C[,−1] can be quite hard to control the prop-
erties of. As noted, even when C is locally small, the result may not end up being so. It
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is therefore desirable to find conditions on, where the localization is more well-behaved.
There are several ways of doing this; we will consider the calculus of fractions approach, simi-
lar to the work of Ore on the localization of noncommutative rings: one can get control over
localizations by imposing a “weak” commutation rule, collapsing an arbitrary zigzag

• −→ • ←− · · · ←− • −→ •
into one of the form

• −→ • ←− • or • ←− • −→ •.

Definition 5.8. Let C be a category, and let , be a collection of morphisms closed under
composition and containing all identity morphisms. We say that C is a right multiplicative
system (or has a left calculus of fractions) if it satisfies the following two conditions:

(M1) For any diagram of solid arrows

G H

G′ H′

5

B∈, C∈,
6

with B ∈, , there are dashed arrows as displayed.

(M2) For any solid diagram

G′ G H H′B
5

6

C

where B ∈, , there is a dashed arrow C ∈, as displayed.

We say that, is a left multiplicative system (or has a right calculus of fractions) if,op is a right
multiplicative system in Cop.

Remark 5.9. The terminology is very scattered, andmost sources tend to pick arbitrarily what
things they call left and right.

Remark 5.10. The way to interpret (M1) is that it allows us to commute a fraction 5 B−1 into
C−16.

To any collection of arrows , in a category C , we can associate some categories and
functors.

Definition 5.11. Let C be a category, and let, be a collection of morphisms in C . We define
the category

,/G := {B : G′→ G | B ∈,},

,/G((B : G′→ G), (C : G′′→ G)) :=

 5 ∈ C(G
′, G′′)

��������
G′ G′′

G

5

B C
commutes

 ,
�/G : ,/G → C , (B : G′→ G) ↦→ G′.

Note that this is a full subcategory of the slice C/G.
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Dually, we define the full subcategory, G/ of G/C by

, G/ := {B : G → G′ | B ∈,},

, G/((B : G → G′), (C : G → G′′)) :=

 5 ∈ C(G
′, G′′)

��������
G

G′ G′′

B C

5

commutes

 ,
�G/ : , G/ → C , (B : G → G′) ↦→ G′.

Proposition 5.12. Let C be a category, let, be a collection of morphisms in C , and let G ∈ C .

(1) Suppose, is a right multiplicative system. Then, G/ is filtered.

(2) Suppose, is a left multiplicative system. Then,/G is cofiltered.

Proof. Statement (2) is formally dual to (1), so we prove only (1). Since, contains the iden-
tities,, G/ is non-empty. To show that, G/ is filtered, it suffices to prove the following:

(a) Any two objects in , G/ map to a common object: let B : G → G′ and C : G → G′′ be
objects of, G/. By (M1), we obtain a diagram

G G′

G′′ G′′′

B

C C′

B′

where C′ ∈, , so C′ ◦ B ∈, by closure under composition, hence we may consider it as
an element of, G/. By commutativity of the diagram, we have morphisms B → C′ ◦ B
and C → C′ ◦ B.

(b) Any two parallel arrows in, G/ are equalized by some morphism: If we have parallel
arrows 5 , 6 : B → C, we apply (M2) to obtain

G

G′ G′′ G′′′
B

C

5

6

C′

where now C′ ◦ C ∈, . We obtain a morphism C′ : C → C′ ◦ C which equalizes 5 , 6.

We conclude that, G/ is filtered. �

This category being filtered means we can drastically simplify the morphisms in the lo-
calization not only in their form but also in terms of their equivalence relation. To prove this,
we will basically do another construction of the localization exploiting this property, and
deduce by universal property that the aforementioned statement is true. Preliminarily, we
make this definition:

Definition 5.13. Let C be a category, and, be a right multiplicative system. We set

C A, (G, H) := lim−→C(G,�
H/) = lim−→

(H→H′)∈, H/

C(G, H′).
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That is, the colimit of the (filtered) diagram

, H/ �H/−−→ C C(G,−)−−−−−→ Set.

Dually, if, is a left multiplicative system, we set

C ;, (G, H) := lim−→C(�/G , H) = lim−→
(G′→G)∈,/G

(G′, H).

That is, the colimit of the (filtered) diagram

(,/G)op
�op
/G−−→ Cop C(−,H)−−−−−→ Set

where we note that this is filtered since,/G is cofiltered.

Remark 5.14. Note that we have a canonical map

C(G, H) → C A, (G, H)

and
C(G, H) → C ;, (G, H)

since idG ∈, G/ and,/G .

Remark 5.15. An element of C A
,
(G, H) consists of a choice of a morphism B : H → H′ and a

morphism 5 : G → H′, i.e. a zig-zag
G → H′← H.

Since, H/ is filtered, we have an explicit description of the equivalence relation. Two such
zig-zags are equivalent if and only if we have a commutative diagram

H′

G H′′′ H

H′′

5

5 ′

B

B′

∈,

The idea is to show that this defines a category.

Theorem 5.16. Let C be a category, and, be a right multiplicative system. Then we have a category
C A
,

whose objects are the same as C , and Hom-sets are given by C A
,
(−,−). Furthermore, the functor

& : C → C A
,
induced by the canonical maps C(−,−) → C A

,
(−,−) exhibits C A

,
as a strict localization

of C by, .

To prove this, we need a lemma which is how we actually produce the composition law.

Lemma 5.17. Let C be a category, and let, be a right multiplicative system. Suppose we have a
morphism B : G → G′ in, . Then composition with B induces an isomorphism

B∗ : C A, (G′, H)
∼−→ C A, (G, H).

Proof. The map sends G′ → H′ ← H to G → G′ → H′ ← H, and that this is well-defined (i.e.
respects the equivalence relation) is clear. We need to check that we get a bijection.
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(a) B∗ is surjective: given a morphism G → H′← H, we apply (M1) to get

H′′

G′ H′

G H

B

and this provides the desired preimage.

(b) B∗ is injective: Suppose we have

G′
5
→ H′

C← H, G′
5 ′

→ H′′
C′← H

and that these are sent to the same thing by B∗. This means that we have a diagram

H′

G I H

H′′

@
5 ◦B

5 ′◦B

C

C′

∈,

@′

and so, applying (M2) we get a morphism A : I → I′ in, such that

H′

G′ I′ H

H′′

A◦@
5

5 ′

C

C′

∈,

A◦@′

commutes, so that the two morphisms we started with are the same.

�

Proof of Theorem 5.16. We split this into two parts.
(a) C A

,
is a category: the composition

C A, (H, I) × C A, (G, H) → C A, (G, I)
is given by

C A, (H, I) × lim−→
(H→H′)∈, H/

C(G, H′) � lim−→
H→H′

(
C A, (H, I) × C(G, H′)

)
since, H/ is filtered,

� lim−→
H→H′

(
C A, (H′, I) × C(G, H′)

)
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by the lemma,

� lim−→
H→H′

lim−→
I→I′

(
C(H′, I′) × C(G, H′)

)
→ lim−→

H→H′
lim−→
I→I′
C(G, I′) � C A, (G, I).

It is clear that this composition law has identity morphisms, given simply by

G
id→ G

id← G.

One needs to check that it’s associative, but for this, the proof of Lemma 5.17 and the
above tell us that composing three morphisms can be written in terms of a diagram

E

D D′

H′ I′ F′

G H I F

so we conclude that C A
,

is a category.

(b) C A
,

is a strict localization of C by, : consider the functor & : C → C A
,

given by G ↦→ G

and (G
5
→ H) ↦→ (G

5
→ H

id← H). One easily sees that if B ∈ , , then &(B) is invertible.
Furthermore, if � : C → D is a functor invertingmorphisms in, , then one canwithout
much effort verify that the rule

G ↦→ �G, (G
5
→ H′

B← H) ↦→ �(B)−1 ◦ �( 5 )

yields a unique well-defined functor �′ : C A
,
→D such that �′ ◦& = �.

This concludes the proof. �

Exercise 15. Verify the details in part (b) of the proof of Theorem 5.16.

Corollary 5.18. LetC be a category, and, be a right multiplicative system. Then there is a canonical
isomorphism of categories C[,−1] � C A

,
. In particular, for all G, H ∈ C , the induced map

C[,−1](G, H) → C A, (G, H)

is bijective.

Corollary 5.19. Let C be a category, and let, be a collection of morphisms. Consider the functor
& : C → C[,−1].

(1) If, is a right multiplicative system, then & preserves finite colimits.

(2) If, is a left multiplicative system, then & preserves finite limits.

Proof. Statement (2) is formally dual to (1), and (1) is a consequence of filtered colimits com-
muting with finite limits in Set. �
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5.3 Interaction with adjoints

Construction 5.20. Let C and C ′ be categories, and consider collections of morphisms, ⊆

Mor(C) and, ′ ⊆ Mor(C ′). Consider an adjunction C C ′
!

'

a and assume that !(,) ⊆ , ′

and '(, ′) ⊆ , . By universal property, we obtain a pair of functors

C C ′

C[,−1] C ′[, ′−1].

!

'

a

!′

'′

Proposition 5.21. Consider the situation in Construction 5.20. Then !′ ` '′.

Proof. Let � : 1⇒ '! and � : !'⇒ 1 be the unit and counit, respectively. We obtain natural
transformations

�′ : 1⇒ '′!′, � : !′'′⇒ 1

which are given on components simply by � and �, i.e. �′G = (G
�G→ '!G = '′!′G). To see that

this defines natural transformations, note that since ! and ' sendweak equivalences to weak
equivalences, we have a commutative diagram

G '!G

• '!•

...
...

H '!H

�G

�

,3 ∈,

�H

in C . This shows that

(G
�G→ '!G → '!• ← · · · → '!H) = (G → •← · · · → H

�H→ '!H)

so that the induced square commutes in C[,−1]. The same reasoning applies to �′. That the
unit and counit �′ and �′ satisfy the triange identities now follows trivially from the fact that
the same holds of � and �. �

5.4 Localizations of additive categories are additive

Lemma 5.22. Let C and C be categories, along with collections of morphisms, ⊆ Mod(C) and
, ′ ⊆ Mor(C ′). Then there is a canonical isomorphism of categories

(C × C ′)[(, ×, ′)−1] � C[,−1] × C ′[, ′−1].
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Proof. Observe that we may compute

Fun(C[,−1] × C ′[, ′−1],ℰ) � Fun(C[,−1],Fun(C ′[, ′−1],ℰ))
� Fun, (C ,Fun(C ′[, ′−1],ℰ))
� Fun, (C ,Fun, ′(C ′,ℰ))
� Fun,×, ′(C × C ′,ℰ) � Fun((C × C ′)[(, ×, ′)−1],ℰ)

where we use the definition of a (strict) localization, and that Fun, (C ,Fun, ′(C ′,ℰ)) �
Fun,×, ′(C × C ′,ℰ) can be checked easily. �

Corollary 5.23. Let � be a finite set, and letC be a category admitting �-indexed coproducts. Suppose
that , ⊆ Mor(C) is a collection of morphisms containing the coproducts q8∈� B8 of all �-indexed
families of morphisms B8 ∈, . Then C[,−1] admits �-indexed coproducts, and

C → C[,−1]

preserves them.

Proof. The functor sending an �-indexed tuple (G8)8∈� ∈
∏

8∈� C to its coproduct
∐

8∈� G8 is the
left adjoint of the constant functor

C ∏
8∈� C

∐
8∈� −

Δ

a

and so, applying Proposition 5.20 and Lemma 5.22 we get

C ∏
8∈� C

C[,−1] ∏
8∈� C[,−1]

∐
8∈� −

Δ

a

Δ

a

which exhibits the existence of �-indexed coproducts in C[,−1]. It is clear from the commu-
tativity of the diagram that C → C[,−1] preserves �-indexed coproducts. �

Exercise 16. Use the same kind of argument to show that if C admits finite products, then
so does C[,−1] and the localization functor preserves them.

Remark 5.24. When the categories and collections of morphisms are more well-behaved, this
can be extended to larger indexing sets �. For example, when the pair (C ,,) comes from a
model category, or more generally a (co)fibration category, arbitrary products of the local-
izations are the localizations of the products. See [Rad09, Thm. 7.1.1].

Lemma 5.25. Let C be an additive category, let D be a category admitting finite products and
coproducts, and suppose there is an essentially surjective functor & : C → D which preserves finite
products and coproducts. ThenD is additive, and & is an additive functor.

Proof. We check the conditions in Remark 1.11. Conditions (1) and (2) are already fulfilled.
First, note that finite products and coproducts agree inD: indeed, for G, H ∈ D, we find

G0 , H0 ∈ C such that G � &(G0), H � &(H0). Then

G q H � &(G0) q &(H0) � &(G0 q H0) � &(G0 × H0) � &(G0) ×&(H0) � G × H
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as desired. This shows that (3) is satisfied.
To prove that (4) holds, let G ∈ D and write G � &(G0). Since C is additive, we have a

morphism 0 : G0 → G0 such that

G0
ΔG0−−→ G0 ⊕ G0

(0,idG0 )−−−−−→ G0 ⊕ G0
∇G−−→ G0

is the zero map. Since & preserves both products and coproducts, we see that

&G0
Δ&G0−−−→ &G0 ⊕ &G0

(&0,id&G0 )−−−−−−−−→ &G0 ⊕ &G0
∇&G0−−−→ &G0

is zero, so that G � &G0
&0→ &G0 � G provides (4). �

Theorem 5.26. Let C be an additive category, and let, ⊆ Mor(C) be a collection of morphisms
containing the identities and closed under direct sums of maps. Then C[,−1] is an additive category,
and & : C → C[,−1] an additive functor.

Proof. Note that& is an essentially surjective (in fact, bijective-on-objects) functor, and that by
Corollary 5.23 and Exercise 16 the localization admits finite products and finite coproducts
which commute with &. Hence, by Lemma 5.25, C[,−1] is additive and & is an additive
functor. �

Example 5.27. Recall that we defined chain complexes in an Abelian category A, and that
given a chain complex G• one may form the cohomologies H8(G•) ∈ A. A morphism 5 : G• →
H• of chain complexes consists of a system of morphisms ( 5 8 : G 8 → H 8) such that

· · · G 8 G 8+1 · · ·

· · · G 8 G 8+1 · · ·
5 8 5 8+1

commutes. In particular, this defines a category Ch(A), and one can check that it is Abelian.
It is also not so hard to check that taking cohomology extends to a collection of functors
H8 : Ch(A) → A. One says that a morphism 5 : G• → H• of chain complexes is a quasi-
isomorphism if H8( 5 ) is an isomorphism for all 8 ∈ ℤ.

Let QisA ⊆ Mor(Ch(A)) denote the quasi-isomorphisms. The derived category ofA is the
localization

D(A) := Ch(A)[Qis−1
A ].

By the above theorem, this is an additive category. It is very important to note, however, that
it is absolutely not an Abelian category; the structure it carries is instead that of a triangulated
category. Tautologically, the functors H8 : Ch(A) → A descend to functors H8 : D(A) → A
by universal property.
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6 Homotopical algebra through deformations

In Lecture 5, we covered the basic theory of how to localize categories at certain morphisms;
in other words, we take a category C and a collection of morphisms , ⊆ Mor(C) and ask
for a universal choice of category C[,−1] wherein the morphisms in, become invertible.
The most basic functoriality properties of this construction demand that these morphisms
are appropriately preserved: if we have pairs (C ,,) and (C ′,, ′), and a functor � : C → C ′
such that �(,) ⊆ , ′, then we have an induced functor making the diagram

C C ′

C[,−1] C ′[, ′−1]

�

& &′

commute. This follows by the universal property, since if �(,) ⊆ , ′ then &′�(,) consists
of invertible morphisms.

In practice, it is very rare to have a functor that behaves like this. In most situations,
the functor � will fail to preserve weak equivalences, and so there is no immediate way to
produce a functor between the localizations. Of course, one still wants to do this, for example
to get functors between derived categories: if � : A → A′ is a functor between Abelian
categories, it induces a functor � : Ch(A) → Ch(A′), and one would like to obtain from
this some kind of functor D(A) → D(A′). Instinctually, one would look to the universal
property for this kind of thing, but that doesn’t work, so another approach is required. That
is the topic of this lecture.

There are various approaches to derived functors, and they may be covered on many
different levels depending on one’s preferences. Here, we follow one which is particularly
beautiful, and also somewhat rare, provided in [Rie14]. It leads to a very clear presentation
of the ideas behind the construction of derived functors, removing many technical aspects,
thought with the downside that it is not entirely practical.

6.1 Homotopical structures & derived functors

Definition 6.1. Let C be a category. A wide subcategory of C is a subcategory containing all
objects of C .

Definition 6.2. A relative category is a pair (C ,,) consisting of a category C and a wide sub-
category, ⊆ C .
(1) We say (C ,,) is a pseudo-homotopical category if, contains all isomorphisms and sat-

isfies the 2-out-of-3 property: for any two morphisms G
5
→ H

6
→ I, if any two of 5 , 6,

or 6 ◦ 5 are in, then so is the third.

(2) We say (C ,,) is a homotopical category if , satisfies the 2-out-of-6 property: for any
three composable morphisms

H

G

F

I

ℎ6

5

6 5

ℎ6 5

ℎ

6

if ℎ6 ∈, and 6 5 ∈, , all other arrows in the 3-simplex above are in, .

The morphisms in, are called weak equivalences.
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Remark 6.3. The notion of a relative category is almost exactly what was implicitly studied
in Lecture 5. Indeed, the wide subcategory , can be specified by giving a collection of
morphisms containing all identities and which is closed under composition.

Remark 6.4. Any homotopical category is a pseudo-homotopical category; the 2-out-of-3
property follows by replacing appropriate arrows by identities. Furthermore, if (C ,,) is
a homotopical category, applying the 2-out-of-6 property yields that, contains all isomor-
phisms: if 5 : G

∼−→ H, then one can consider the 3-simplex formed by

G
5
→ H

5 −1

→ G
5
→ H

and note that the partial compositions are the identities, which are in, .
Any category C can be promoted to a homotopical category in a trivial way by letting,

be the largest groupoid contained in C , i.e. the subcategory given by all the isomorphisms.

Notation 6.5. Let (C ,,) be a relative category. The localization,−1C is sometimes denoted
by ho(C ,,) (or ho(C) if, is left implicit), and is called the homotopy category of (C ,,).

We will typically leave the wide subcategory, implicit in the notation.

A functor C → D between (pseudo-)homotopical categories is called homotopical if if
sends weak equivalences to weak equivalences. Trivially, a homotopical functor induces a
functor ho(C) → ho(D). When the functor fails to be homotopical, however, it is not clear
what to do in order to obtain a functor on the level of homotopy categories. Derived functors
are an attempt to formalize the notion of a best approximation of the functor on this level.

There are many technically different definitions of derived functors at our level of gener-
ality, and they are not necessarily equivalent. We take the conventions used [Rie14], as they
seem reasonable enough, and also correspond in a straightforward way to e.g. what is used
in [KS06].

Definition 6.6. Let � : C → D be a functor between relative categories. A total left derived
functor L� of � is a right Kan extension

C D

ho(C) ho(D)

�

� �

L�

of the composition C �→D → ho(D) along the localization functor C → ho(C). We say that
the total derived functor L� is absolute if the right Kan extension above is absolute.

A left derived functor of � is a pair (��,�) of a homotopical functor �� : C → D and a
natural transformation � : �� ⇒ � such that the induced functor ��� : ho(C) → ho(D)
defines a total left derived functor

C D

ho(C) ho(D)

�

� �

���

��

of �. We say �� is an absolute left derived functor if the above total left derived functor is
absolute.

Exercise 17. Dualize the above notions to define (absolute) (total) right derived functors.

As bare Kan extensions are not particularly well-behaved, nor are derived functors, and
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establishing their existence is generally very hard. Absolute derived functors exhibit farmore
desirable properties.

Proposition 6.7. Consider an adjunction

C D
�

�

a

between relative categories, and assume that � admits an absolute total left derived functor and �
admits an absolute total right derived functor. Then the adjunction descends to an adjunction

ho(C) ho(D).

L�

R�

a
Proof. We have that the diagrams

C D

ho(C) ho(D)

�

� �

L�


C D

ho(C) ho(D)

�

� �

R�

�

provide a right and left absolute Kan extensions, respectively. Using the Kan extensions
(L�, ) and (R�, �) are absolute, we see that the pairs

(R�L�,R�L��
R�⇒ R���), (L�R�, L��

L��
⇒ L�R��)

are left (resp. right) Kan extension along � (resp. �). Now, hitting � with � and  with G,
and combining this with the adjunction � ` � (with unit/counit � and �), we get composite
natural transformations

� ��� R���

R�L��
∃!

�� ��

R�

L��� ��� �

L�R��
L��

� ��

∃!

producing unique dashed natural transformations by universality. By the universal property
of the localization, these correspond uniquely to natural transformations

�′ : 1⇒ R� ◦ L�, �′ : L� ◦R�⇒ 1.

We must show that the natural transformations �′ and �′ satisfy the triangle identities.
Observe that by universal property of the localization and of right Kan extensions, the com-
mutativity of the below left diagram

L�R�L�

L� L�

�′L�L��′ ¡

L�R�L��

L�� L�� ��

�′L��L��′�



is equivalent to the two obvious compositions in the above right diagram being equal. Now,
applying L� on the left to the diagram defining �′ and � on the right to the diagram defining
�′, as well as using the naturality of �′ and , we see that the diagram
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�� ����

L�� L���� L�R��� ��

L�R�L�� L��

���

���

L���

L��′�



L���

��

�′��

�′L��

L�R� 

commutes. The identity then follows from the triangle identity �� ◦ �� = id�. The other case
is handled similarly. �

Exercise. In the diagram at the end of the above proof there are two squares. It is claimed
that they commute by naturality. Check this.

6.2 Deformations

While a typical functor C → D between (pseudo-)homotopical categories fails to be ho-
motopical, there are usually subcategories of C on which the functor does preserve weak
equivalences. Restricted to such subcategories, it is straightforward to compute the derived
functor, as it is simply induced by universal property. However, the resulting functor of
course need not be related to the original, due to the restriction step.

In favourable situations, every object in C can be replaced by one from a subcategory on
which a functor acts homotopically. In even more favourable situations, this can be done
functorially. This is captured in the following definition.

Definition 6.8. Let (C ,,) be a relative category,

(1) Consider two functors �, � : D → C . A natural transformation � : � ⇒ � is a natural
weak equivalence if all components are weak equivalences, i.e. ∀G ∈ D , �G ∈, .

(2) A left deformation of C is a pair (&, @) consisting of a functor & : C → C and a natural
weak equivalence @ : & ⇒ 1. Dually, a right deformation is a pair (', A) consisting of a
functor ' : C → C and a natural weak equivalence A : 1⇒ &.

(3) Let (&, @) be a left deformation. A full subcategory C& of C which contains the image
of & is called a category of &-cofibrant objects. This is promoted to a relative category by
letting the weak equivalences be C& ∩, .
Dually, let (', A) be a right deformation. A full subcategory C' of C which contains the
image of ' is called a category of '-fibrant objects. This is promoted to a relative category
by letting the weak equivalences be C' ∩, .

(4) Consider another relative category (C ′,, ′) and some functor � : C → C ′. We say �
is left deformable if there is a left deformation (&, @) of C and a category of &-cofibrant
objects C& such that �|C& : C& → D is homotopical, where C& is endowed with weak
equivalences C& ∩, .

Proposition 6.9. Let (C ,,) be a pseudo-homotopical category, and let (&, @) be a left deformation.
Then the following statements hold.

(1) The functor & is homotopical.
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(2) For any category of &-cofibrant objects C& , the induced functor

ho(C&) → ho(C)

is an equivalence.

Proof. (1) Let 5 : G → H be a weak equivalence. Then we have a diagram

G &G

H &H

@G

5 & 5

@H

so by the 2-out-of-3 property, & 5 is a weak equivalence. Hence & is homotopical.
(2) By the definition of the induced relative category structure on C& , C& ↩→ C is homo-

topical, giving the induced functor

� : ho(C&) → ho(C).

On the other hand, by (1), & is homotopical and so induces a functor

&′ : ho(C) → ho(C&).

Now, observe that both the composites

C& ↩→ C &→ C& , C
&→ C& ↩→ C

have natural weak equivalences to 1C& and 1C , respectively, formed from the natural weak
equivalence @ : & ⇒ 1. On the level of the homotopy categories, these give rise to the desired
natural isomorphisms

&′� � 1ho(C& ) , �&′ � 1ho(C)

which yields the result. �

6.3 Existence of absolute derived functors via deformations

Functors that admit left or right deformations are nice enough that they induce not only a
total derived functor, but an absolute total derived functor; even more, one gets a derived
functor without even passing to the localization.

Theorem 6.10. Let � : C → D be a left deformable functor between pseduo-homotopical categories,
with left deformation (&, @). Then � admits an absolute left derived functor given by

(�� := �& : C → D , �@ : �& ⇒ �).

Proof. Let � : C → ho(C) and � : D → ho(D) denote the localization functors. There are
three steps to this proof.

(1) To check that L� exists and is absolute, it suffices to work with �� (as �� = �& is
homotopical since & is a deformation of a pseudo-homotopical category), functors
� : ho(D) → ℰ, and to consider homotopical functors � : C → ℰ with natural trans-
formations � : � ⇒ ���. This is by the universal property of localizations, and in
particular, the isomorphism

�∗ : Fun(ho(C),ℰ) � Fun, (C ,ℰ),
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where, are the weak equivalences on C .

(2) Factorizations exist. Let � : �⇒ ��� be a natural transformation. Then, by naturality
and � being homotopical,

�& ���&

� ���

�@

�&

���@

�

=⇒ � = (�
(�@)−1

⇒ �&
�&
⇒ ���&

���@
⇒ ���)

which gives the desired factorization.

(3) Factorizations are unique: given another factorization as in the below left,

� ���

���&
�′

�

���@

&
{

�& ���&

���&2
�′&

�&

���@&

we get the above right diagram by applying & on the right. Since @& lives in a cate-
gory of &-cofibrant objects, �@& is a natural weak equivalence. Therefore, ���@& is a
natural isomorphism, so that �′& is uniquely determined. However, �′ is determined
by �′&, as demonstrated by the naturality square

�& ���&2

� ���&

�@

�′&

���&@

�′

from which we conclude that (�&, �@) defines an absolute left derived functor.

This completes the proof. Note that the above specializes to show that (�&, �@) is a left
derived functor by setting � = idho(D). �

Remark 6.11. In the above proof, the assumption that D is pseudo-homotopical can be
weaked to it merely being a relative category. Indeed, the only aspect of the proof that re-
lies on a pseudo-homotopical assumption is that the deformation functor & : C → D is
homotopical, which demands the 2-out-of-3 property. Obviously, this does not involveD.

6.4 Pseudofunctoriality

We have seen that left deformable functors � : C → D between pseudo-homotopical cate-
gories admit absolute total left derived functors L�. This suggests that there should be some
assignment L : � ↦→ L�, which we may hope is functorial. However, this is not generally
true: the composition of two absolute total left derived functors need not be a total left de-
rived functor. On the other hand, with some mild assumptions in place, one can arrange for
a form of weak functoriality.

Recall that a (strict) 2-category is a category enriched in categories. The prototypical ex-
ample of this is Cat, the 2-category of categories (subject to some set-theoretical constraint).
As this case is fairly clear, and all other examples we work with here will essentially be de-
rived from it, we will not expound upon the definition any further for the moment.
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Definition 6.12. We define a 2-category LDef as follows.

★ The objects are tuples (C ,,, &, @,C&) consisting of a pseudo-homotopical category
(C ,,), a left deformation (&, @) for C , and a choice of a distinguished category of &-
cofibrant objects C& .

★ A 1-morphism (C ,,, &, @,C&) → (C ′,, ′, &′, @′,C ′
&′) consists of a left deformable

functor � : C → C ′ for which a choice of left deformation is &, and such that � sends
distinguished&-cofibrant objects to distinguished&-cofibrant objects, i.e. restricts to a
functor C& → C ′&′.

★ A 2-morphism � ⇒ �′ is a natural transformation, with no added compatibility re-
quired.

Theorem 6.13. There is a pseudofunctor

L : LDef → Cat

which

(1) sends a tuple (C ,,, &, @,C&) to ho(C),

(2) sends a left deformable functor � : (C ,,, &, @,C&) → (C ′,, ′, &′, @′,C ′&′) to its total left
derived functor L� : ho(C) → ho(D), and

(3) sends a natural transformation �⇒ �′ to the induced natural transformation L�⇒ L�′.

For the purposes of explaining the above theorem, we include below the definition of
a pseudofunctor between strict 2-categories. In the less strict setting of a bicategory, the
definition is similar but with small variations (since e.g. the associativity of the composition
there is up to natural isomorphism).

Definition 6.14. A pseudofunctor % : C → D between 2-categories consists of the following
data and conditions.

(1) A function % : ObC → ObD.

(2) For each pair of objects (G, H) in C , a functor

%G,H : C(G, H) → D(%G, %H).

(3) For each triple of objects (G, H, I) in C , two natural isomorphisms

C(H, I) × C(G, H) C(G, I)

D(%H, %I) × D(%G, %H) D(%G, %I)

◦

%×% %

◦

[0] C(G, G)

D(%G, %G)

idG

id%G

%

with components

%6 ◦ % 5
%6, 5
=⇒ %(6 ◦ 5 ), id%G

%idG
=⇒ %idG .

(4) For each 1-morphism 5 : G → H in C , the diagrams of 2-morphisms
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id%H ◦ % 5 % 5

%idH ◦ % 5 %(idH ◦ 5 )

%idH% 5

%idH , 5

% 5 ◦ id%G % 5

% 5 ◦ %idG %( 5 ◦ idG)
% 5 %idG

% 5 ,idG

commute.

(5) For each triple of 1-morphisms G
5
→ H

6
→ I

ℎ→ F in C , the diagram of 2-morphisms

%ℎ ◦ (%6 ◦ % 5 ) %ℎ ◦ %(6 ◦ 5 ) %(ℎ ◦ (6 ◦ 5 ))

(%ℎ ◦ %6) ◦ % 5 %(ℎ ◦ 6) ◦ % 5 %((ℎ ◦ 6) ◦ 5 )

%ℎ%6, 5 %ℎ,6◦ 5

%ℎ,6% 5 %ℎ◦6, 5

commutes.

Proof of Theorem 6.13. The statement of the theorem provides us with (1) and (2) in Definition
6.14. For simplicity, let us denote an object of LDef simply by C , leaving all the other data
implicit. We have to give natural isomorphisms

LDef (C ′,C ′′) × LDef (C ,C ′) LDef (C ,C ′′)

Cat(ho(C ′), ho(C ′′)) × Cat(ho(C , ho(C ′)) C ′(ho(C), ho(C ′′))

◦

L×L L

◦

[0] LDef (C ,C)

Cat(ho(C), ho(C))

idG

id%G

L

and on components, these will be of the form

L� ◦ L�⇒ L(� ◦ �), 1ho(C) ⇒ L1C

where � : C → C ′ and � : C ′→ C ′′. Note that we have a natural transformation

���� = �&′�&
�@′�&
=⇒ ��& = �(��).

This is a natural weak equivalence since � maps C& to C ′
&′, which � acts homotopically on;

similarly, this is why ��& = �(��). Secondly, note that

�1C = &
@
⇒ 1C

is a natural weak equivalence. These two natural weak equivalences descend to the compo-
nents

��,� : L� ◦ L� � L(� ◦ �), C : 1ho(C) � L1C
that we want. We leave it to the reader to check that these components form natural isomor-
phisms.

We now prove (4). For the left diagram, it suffices to check that @�� = 1C @�&, but this
holds by definition. For the right diagram, we are comparing ��@ and �@1C&. That is, the
natural transformations �&@ and �@&. By naturality, @ ◦ @& = @ ◦ &@, so for all G ∈ C , we
have

�(@) ◦ �(@&G) = �(@) ◦ �(&@G)
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which, if G ∈ C& , implies that �(@&G) = �(&@G). In ho(C), @ provides an isomorphism be-
tween any object and a &-cofibrant one, so this extends to everything in ho(C).

To prove (5), it suffices to show that

�@′′��& ◦ �&′′�@′�& = ��@′�& ◦ �@′′�&′�&.

This follows by the naturality square

&′′�&′ &′′�

�&′ �

&′′�@′

@′′�&′ @′′�

�@′

which completes the proof. �

6.5 Appendix: When functoriality fails

Remark 6.15. In the presence of a model structure, even without functorial (co)fibrant re-
placement, absolute derived functors can still be produced. However, it will usually fail to
lift to a functor prior to localizing. See [Pav22] for a brief explanation, or [Cis19] for a more
detailed one, of how one would construct the left derived functor in such a situation.

There is another approach to producing absolute total derived functors, taken in [KS06],
which does not require a functorial deformation. Instead, they exploit the features of having
a nicer collection of weak equivalences, namely a multiplicative system as defined in Lecture
5.

In Proposition 6.9, we see that categories of &-cofibrant objects C& induce equivalences
ho(C&) ' ho(C). Similarly, in the situation where you have a potentially non-functorial left
deformation (so, for every object G ∈ C an object &G ∈ C& and a weak equivalence &G → G),
but the weak equivalences , form a right multiplicative system, one can still get such an
equivalence (and use it to compute the total derived functor, and show it is absolute).

We take for granted the following lemma.

Lemma 6.16. Let ! : � → � be a functor, and assume that � is filtered, ! is fully faithful, and for any
8 ∈ � there is some 9 ∈ � with a morphism 8 → !(9). Then � is filtered, and ! is cofinal.

Proof. See [KS06, Prop. 3.2.4]. �

We consider the situation of a right multiplicative system (and constructing right derived
functors), leaving the other case implicit by duality.

Proposition 6.17. Let (C ,,) be a relative category such that, forms a right multiplicative system.
Let C ′ be a full subcategory of C , and set, ′ := C ′ ∩, .

(1) Assume that for all 5 : G → H in, with G ∈ C ′, there is some 6 : H → I such that I ∈ C ′ and
6 ◦ 5 ∈ , . Then, ′ is a right multiplicative system, and the induced map ho(C ′) → ho(C)
is fully faithful.

(2) Assume that for all G ∈ C there is some G′ ∈ C ′ and a weak equivalence G → G′. Then, ′ is a
right multiplicative system, and ho(C ′) → ho(C) is an equivalence.

Proof. (1) First, we show that, ′ is a rightmultiplicative system. For this, both (M1) and (M2)
follow by applying them in C then using the given assumption to move them back to C ′.

Now, the inclusion C ′ ↩→ C is homotopical, hence induces a functor ho(C ′) → ho(C). On
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the level of Hom-sets, this is given by the canonical map

lim−→
(H→H′)∈, ′H/

C(G, H′) → lim−→
(H→H′)∈, H/

C(G, H′)

coming from the inclusion, ′H/ ↩→, H/. The inclusion is seen to be cofinal by applying the
above lemma; indeed, given some H → H′ in, H/, we find some H′ → H′′ with H′′ ∈ C ′ and
for which the composition is in , , i.e. in , ′. In particular, the canonical map above is an
isomorphism.

(2) The criterion in (1) is clearly satisfied, so , ′ is a right multiplicative system and the
functor ho(C ′) → ho(C) is fully faithful. However, by assumption it is also essentially surjec-
tive, hence an equivalence. �

Wemay think of the aboveproposition as saying thatwhenwe canproduce non-functorial
replacements in the context of a right multiplicative system, this can be promoted to a func-
torial scheme on the level of the homotopy categories. Indeed, by taking a quasi-inverse of
the inclusion ho(C ′) ↩→ ho(C), which is an equivalence, we get a functor

& : ho(C) → ho(C ′)
and we may even compose this with the canonical localization functor to get a homotopical
functor C → ho(C ′), which is very close to a deformation.

Lemma 6.18. Consider functors

C &−→ C ′ �−→ A.
Assume that for any G ∈ C ′, there is some H ∈ C with a morphism B : G → &H such that the following
conditions are satisfied.

(a) �(B) is an isomorphism.

(b) For any H′ ∈ C and any morphism C : G → &H′, there is some H′′ ∈ C and morphisms
B′ : H′→ H′′, C′ : H → H′′ such that �(B′) is an isomorphism and the diagram

G &H

&H′ &H′′

B

C &C′

&B′

commutes.

Then � is an absolute right Kan extension of �& along &.

Proof. Here, the proposed structural natural transformation exhibiting� as Ran&(�&) is just
the identity. As a result, what we have to show is that

&∗ : Fun(C ′,A)(�, �) → Fun(C ,A)(�&, �&)

is bijective.

(1) Injectivity: consider two natural transformations �, �′ : � ⇒ � for which �& = �′&.
For G ∈ C ′, pick some H ∈ C with a morphism B : G → &H for which �B is an isomor-
phism. We have a diagram
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�G �G

�&H �&H

�B

�G

�′G
�B

�&H=�′&H

which commutes, except for knowing that the two arrows at the top are identical. How-
ever, as�B is invertible and the two arrows at the bottom agree, the arrows on top agree.

(2) Surjectivity: suppose we are given a natural transformation � : �& ⇒ �&. For each
G ∈ C ′, choose a morphism BG : G → &H satisfying (a) and (b), and set

�′G := (�BG)−1 ◦ �H ◦ �BG : �G → �G.

We want to show this is independent of the choices made for BG , and assembles into a
natural transformation.
Let 5 : G1 → G2 be a morphism in C ′, and consider any choices B8 : G8 → &H8 of
morphisms satisfying (a) and (b); following the above, these yield morphisms �′G8 . Ap-
plying (b) to B1 and B2 ◦ 5 , we find morphisms

C1 : H1 → H3 , C2 : H2 → H3

for which �C2 is an isomorphism, and &C1 ◦ B1 = &C2 ◦ B2 ◦ 5 . One then sees that in the
diagram

�G1 �G1

�&H1 �&H1

�&H3 �&H3

�&H2 �&H2

�G2 �G2

�′G1

� 5

�B1

� 5

∼
�B1�H1

�&C1

�&C1�H3

�H2

�&C2 ∼
�&C2

�′G2

�B2 ∼
�B2

all the inner diagrams commute, hence the outer diagram commutes. Taking 5 = idG ,
we see that any two choices of BG yield the same �′G , and in general, the above diagram
shows we have a natural transformation.
We see that �′& = � by the independence of choices. In particular, for any&H, we may
choose the identity &H → &H to see that �′

&H
= �H .

We conclude that � is a right Kan extension of �& along &. To see that it is absolute, let
� :A →A′ be another functor. Then

C &−→ C ′ ��−→ A′

satisfies hypotheses (a) and (b), since � preserves isomorphisms. Therefore, �� is the right
Kan extension of ��& along &, and we are done. �
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Theorem 6.19. Let (C ,,) be a relative category for which, forms a right multiplicative system.
Consider a functor � : C → D, where (D , �) is a relative category. Assume that there is a full
subcategory C ′ ↩→ C satisfying the following conditions, where, ′ := C ′ ∩, :

(a) For any G ∈ C , there is a weak equivalence G → G′ where G′ ∈ C ′.

(b) For any B ∈, ′, the morphism �B is a weak equivalence inD, i.e. �B ∈ �.

Then � has an absolute total right derived functor R� such that

(C ′ ↩→ C → ho(C) R�→ ho(D)) � (C ′ ↩→ C �→D → ho(D)).

Proof. Let � : C ′ ↩→ C be the inclusion. By our assumptions, the functor �′ : ho(C ′) → ho(C)
is an equivalence. Let & be a quasi-inverse. Since � acts homotopically on C ′, we have an
induced functor �′ : ho(C ′) → ho(D). For any � : ho(D) → ℰ, we then have the diagram

C ′ C D

ho(C ′) ho(C) ho(D) ℰ.

�

�′

�

� �

�′

�′

&
�

Now, for any � : ho(C) → ℰ we have a chain of natural morphisms

Fun(C ,ℰ)(���, ��) → Fun(C ′,ℰ)(����, ���)
� Fun(C ′,ℰ)(�′�′, ��′�′)
� Fun(ho(C ′),ℰ)(��′, ��′)
� Fun(ho(C),ℰ)(��′&, �).

It thus suffices to check that the first morphism is an isomorphism. This follows by applying
Lemma 6.18; indeed, it clearly applies to

C ′ �
↩→ C

�
→ ho(C)

by our assumptions and property (M1) of being right multiplicative, so that � is an absolute
right Kan extension of �� along �. By absoluteness, ��� is a right Kan extension of ����
along �, which means precisely that the given morphism is bijective.

Setting � = idho(D), we see that �′& = R� is a total right derived functor, and the above
computation shows it is also absolute. �

In this setting, we still get pseudofunctoriality. We sketch how this is done.

Definition 6.20. Define the strict 2-category LMul by the following.

★ On objects: tuples (C ,,,C ′) where (C ,,) is a relative category with, a left multi-
plicative system, and C ′ is a subcategory of C such that for all G ∈ C there is a weak
equivalence G′→ G with G′ ∈ C ′.

★ On 1-morphisms: a morphism (C , F,C ′) → (D , �,D′) is a functor � : C → D such
that �C ′ ⊆ D′ and �|C ′ is homotopical.

★ On 2-morphisms: just take natural transformations.

Dually, define RMul.
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Theorem 6.21. We have pseudofunctors

L : LMul→ Cat, R : RMul→ Cat

which

(1) send objects (C ,,,C ′) to ho(C) = C[,−1],

(2) send 1-morphisms � to L� and R�, respectively, and

(3) send 2-morphisms �⇒ �′ to the induced natural transformations L�⇒ L�′ and R�⇒ R�′,
respectively.

Proof sketch. We examine the case of RMul. There is lots of data to produce, and we only do
one part, which is to give the natural isomorphism

R� ◦R� � R(� ◦ �).

Let � : C → D and � : D → ℰ be 1-morphisms in RMul, and let � : C → ho(C), �′ : D →
ho(D) and �′′ : ℰ → ho(ℰ) be the localization functors. Then we have canonical natural
transformations

�′′ ◦ �⇒ R� ◦ �′, �′ ◦ �⇒ R� ◦ �,
and thus may form the composite

�′′ ◦ � ◦ �⇒ R� ◦ �′ ◦ �⇒ R� ◦R� ◦ �

which induces a canonical natural transformation

� : R(� ◦ �) ⇒ R� ◦R�.

Wemust show this is a natural isomorphism, i.e. show that for all G ∈ ho(C), �G is an isomor-
phism. Write G � �(G0), and choose a weak equivalence G0 → G′0 with G′0 ∈ C ′. The crux is
that then R�G � �G′0, and since �C ′ ⊆ D′, we also have R�(�G′0) � ��G′0. Thus, �G factors
as a composition of isomorphisms, and as such is an isomorphism. �

6.6 Appendix: Kan extensions

Kan extensions formalize the notion of a universal best approximation of an extension of a
functor along another functor.

Definition 6.22. Let � : C → ℰ,  : C → D be functors. A left Kan extension of � along  is a
functor is given by the data of a functor and natural transformation

C ℰ

D

�

 Lan �
�

universal in the sense that any other functor with this data factors uniquely as below:

C ℰ

D

�

 �
� =

C ℰ

D

�

 

Lan �

�

�
∃!

i.e. there is a unique natural transformation �′ : Lan �→ � such that � = �′ ◦ � = �.
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The dual notion of a right Kan extension (Ran �, �) of � along  is given by reversing the
directions of the natural transformations.

Note that a functor which has a genuine extension “on the nose” may not have an actual
Kan extension, as the aforementioned extension may not be appropriately universal.

Exercise. Let C be a category, and let G : [0] → C be the functor picking out an object G ∈ C ;
accordingly, let ∗ : [0] → Set be the functor picking out a one-point set. Show that the left
Kan extension LanG ∗ is given by C(G,−).

Left (or right) Kan extensions on their own are not generally very well-behaved. On the
other hand, there are slight variations on the notion which has more desirable properties.

Definition 6.23. Consider functors � : C → ℰ and  : C → D. A functor � : ℰ → ℰ′ is said
to preserve the left Kan extension (Lan �, �) of � if (� ◦Lan �, ��) is a left Kan extension of
� ◦ � along  ,

C ℰ ℰ′.

D

�

 

�

Lan �

Lan ��

�

One says that the left Kan extension (Lan �, �) is pointwise if it is preserved by all corep-
resentable functors ℰ(G,−), G ∈ ℰ, and absolute if it preserved by all functors with domain
ℰ.

All concepts in 1-category theory can be expressed in terms of Kan extensions. Notably,
(co)limits and adjoints can be formulated in this language.
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7 Triangulated categories

Homological algebra is essentially concerned with properties of the cohomology of chain
complexes, and so is primarily interested in the category of chain complexes Ch(A) in an
Abelian category considered up to quasi-isomorphism. The way this is done, classically, is by
passing from the category of chain complexes Ch(A) to the derived category D(A), which is
obtained from Ch(A) by formally inverting the quasi-isomorphisms (i.e. morphisms which
induce an isomorphism on cohomology) through the machinery of Lecture 5.

In the process of forming the derived category D(A), many properties ofA (and Ch(A))
are destroyed: whereas the latter two are Abelian categories, the former is not. However,
one nonetheless sees a shadow of its Abelian origins; for one, D(A) is an additive category.
Furthermore, it sees the remains of kernels and cokernels with nice properties, though they
are no longer canonical. In the 1960s, Grothendieck & Verdier developed the formalism of
triangulated categories to deal with the problem of encapsulating the properties exhibited by
derived categories.

7.1 Pre-triangulated categories & triangulated categories

The basic initial concept of triangulated categories is to mimick the property that Abelian
categories admit exact sequences. In the context of triangulated categories, the analogous
concept is a triangle.

Definition 7.1. Let T be an additive category equipped with an automorphism Σ : T → T .
A triangle for Σ is a sequence of maps

G
5
→ H

6
→ I

ℎ→ ΣG

in T . One says that a triangle as above is a candidate triangle if 6 ◦ 5 = 0 and ℎ ◦ 6 = 0.
A morphism of triangles from G → H → I → ΣG to G′→ H′→ I′→ ΣG′ is a triple of maps

(0, 1, 2) in a commutative diagram

G H I ΣG.

G′ H′ I′ ΣG′

0 1 2 Σ0

Recall that we briefly discussed Quillen exact categories in Appendix 2.3. These were ad-
ditive categories which admitted some kernels and cokernels, in the form of certain distin-
guished exact sequences. Triangulated categories are very similar: one specifies a distin-
guished class of triangles to be considered “exact.”

Definition 7.2. A (Neeman) pre-triangulated category is a triple (T ,Σ,ℰ) of an additive cate-
gory T , an automorphism Σ : T → T , and a set ℰ of triangles for Σ, called the distinguished
triangles or exact triangles, closed under isomorphisms of triangles. These are required to
satisfy the following axioms:

(TR1) For any G ∈ T , G id→ G → 0 → ΣG is a distinguished triangle, and for any morphism
5 : G → H in T there is a distinguished triangle

G
5
→ H → I → ΣG.

(TR2) The triangle
G

D→ H
E→ I

F→ ΣG
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is distinguished if any only if the triangle

H
E→ I

F→ ΣG
−ΣD→ ΣH

is distinguished.

(TR3) For any commutative diagram

G H I ΣG

G′ H′ I′ ΣG′

0 1 Σ0

of solid arrows where the rows are distinguished triangles, a dashed arrow exists mak-
ing the diagram into a morphism of triangles. It need not be unique!

We often abuse notation by saying that T is a pre-triangulated category, leaving the rest of
the data implicit. We call the functor Σ the shift functor.

Remark 7.3. One will often see distinguished triangles notated as

G → H → I
+1→

as shorthand. There is also other common notation used for the shift functor, such as ) or
[1], the latter being written as e.g. G[1]. We will likely switch between different notations
depending on the context.

Terminology 7.4. Consider a pre-triangulated category T and a morphism 5 : G → H. An
object I with a morphism 6 : H → I as in (TR1), i.e. sitting in a distinguished triangle

G
5
→ H

6
→ I → ΣG

is called a cone of 5 . Dually, one calls 5 a cocone of 6.

Remark 7.5. One should think of a cone of 5 as roughly like a cokernel (which we will justify
the dual of in Corollary 7.14), except up to homotopy in some sense. Notably, it is absolutely
not unique! On the other hand, we will see that it certainly is unique up to isomorphism (see
Proposition 7.17), just not a canonical one.

One can constrast this situation with the one for exact categories, which are similar except
that the cokernel actually is canonical.

Exercise 18. Let T be a pre-triangulated category. Show that an analogue of axiom (TR3)
holds for any “partial morphism of distinguished triangles” missing only one arrow.

Definition 7.6. Let T and T ′ be triangulated categories. A lax-triangulated functor is a pair
(�, �) of an additive functor � : T → T ′ and a natural transformation � : � ◦Σ→ Σ ◦ � such
that for all distinguished triangles

G
5
→ H

6
→ I

ℎ→ ΣG d.t. in T =⇒ �G
� 5
−→ �H

�6
−→ �I

�I◦�ℎ−→ Σ�G d.t. in T ′

We say a lax-triangulated functor is triangulated (or strict) if � is a natural isomorphism.

Remark 7.7. Triangulated functors are sometimes called exact functors, in analogy with exact
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functors between Abelian categories. We will not use this terminology.

Lemma 7.8. Let T be a pre-triangulated category. Then any distinguished triangle is a candidate
triangle.

Proof. Consider a distinguished triangle

G
5
→ H

6
→ I → ΣG.

By (TR2), it suffices to show that 6 ◦ 5 = 0. To do this, apply (TR1) and (TR3) to see that we
have a morphism of triangles

G G 0 ΣG

G H I ΣG

5

5 6

from which it follows that 6 ◦ 5 = 0. �

Definition 7.9. A triangulated category is a pre-triangulated category T in which the distin-
guished triangles satisfy the following additional axiom relating the cones of composable
morphisms with those of their composition:

(TR4) Let 5 : G → H and 6 : H → I be morphisms in T , lying in a commutative diagram of
solid arrows as below

G H F ΣG

G I F′ ΣG

H I F′′ ΣH

F F′ F′′ ΣF

5

6

6◦ 5

5 Σ 5

6

in which the rows are distinguished triangles. Then there exist dashed arrows as in-
dicated making the diagram commute and making the bottom row a distinguished
triangle.

Remark 7.10. One can think of (TR4) as analogous to the third isomorphism theorem. Heuris-
tically, cones are like cokernels, so if we set F = H/G, F′ = I/G, and F′′ = I/H, then (TR4)
says that (I/G)/(H/G) = I/H.

Exercise 19. Let T be a (pre-)triangulated category. Show that T op can be endowedwith the
structure of a (pre-)triangulated category, where the shift is given by the inverse of the shift
on T .

7.2 Cohomological functors & the “triangulated Yoneda lemma”

One of the magical miracles that pre-triangulated categories allow us is a way to formulate
what it means for a functor to be cohomological.
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Definition 7.11. Let T be a triangulated category, andA an Abelian category. Consider an
additive functor � : T → A. We say � is cohomological if for any distinguished triangle

G → H → I → ΣG

in T , the sequence
�G → �H → �I

inA is exact.

Remark 7.12. The mantra is: cohomological functors take short exact sequences to long exact
sequences. The above makes this precise; given a “short homotopy exact sequence”

G → H → I → ΣG,

we extend this to a long sequence of morphisms

· · · → Σ−1H → Σ−1I → G → H → I → ΣG → ΣH → · · ·

and after applying �, obtain a long exact sequence

· · · → �Σ−1H → �Σ−1I → �G → �H → �I → �ΣG → �ΣH → · · ·

as expected.

Proposition 7.13: “Triangulated Yoneda lemma”. Let T be a pre-triangulated category, and let
G ∈ T . Then the functors

T (G,−) : T → Ab, T (−, G) : T op → Ab

are cohomological.

Proof. We prove the proposition for T (G,−); the other case is essentially dual. Fix a distin-
guished triangle

G′
5
→ H′

6
→ I′→ ΣG′

and consider the sequence

T (G, G′)
5∗−→ T (G, H′)

6∗−→ T (G, I′).

Since 6 ◦ 5 = 0, this is a complex, i.e. im( 5∗) ⊆ ker(6∗). For the other inclusion, let E : G → H′

be such that 6 ◦ E = 0. We need to find a map D : G → G′ such that D = 5 ◦ E. Applying
Exercise 18, we have a filling dashed arrow in the solid diagram

G G 0 ΣG

G′ H′ I′ ΣG′

D E ΣD

5 6

providing the desired map D : G → G′. �

Corollary 7.14. Let T be a pre-triangulated category, and let G
5
→ H

6
→ I → ΣG be a distinguished

triangle. Then the morphism 5 satisfies the following “weak” universal property with respect to 6:
for any morphism D0 : G0 → H such that 6 ◦ D = 0, there exists a morphism D : G0 → G making the
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diagram

G0

G H I ΣG

D
D0

0

commute.

Terminology 7.15. A morphism 5 : G → H satisfying the property described above for a
morphism 6 : H → I is called a weak kernel for 6. Dually, one defines the notion of a weak
cokernel for 5 .

Exercise 20. Write out a proof for the unproven part of Proposition 7.13, and deduce the dual
of Corollary 7.14. That is, show that cones are weak cokernels.

Remark 7.16. The above implies that distinguished triangles form weak kernel/cokernel pairs,
analogous to the observation that the distinguished exact sequences in an exact category
form distinguished kernel/cokernel pairs.

Proposition 7.17: “Triangulated five lemma”. Let T be a pre-triangulated category. Consider
a morphism

G H I ΣG

G′ H′ I′ ΣG′

0 1 2 Σ0

of distinguished triangles. If any two of 0, 1, 2 are isomorphisms, then so is the third.

Proof. By applying (TR2), it suffices to show that if 0 and 1 are isomorphisms, then so is 2.
Let F ∈ T . Applying Proposition 7.13, we have a commutative diagram

T (F, G) T (F, H) T (F, I) T (F,ΣG) T (F,ΣH)

T (F, G′) T (F, H′) T (F, I′) T (F,ΣG′) T (F,ΣH′)

0∗ 1∗ 2∗ (Σ0)∗ (Σ1)∗

with exact rows. By assumption, all arrows are isomorphisms except the dashed one, so by
the classical five lemma, the dashed morphism is also an isomorphism. Since this holds for
all F, the Yoneda lemma tells us that 2 is an isomorphism. �

Corollary 7.18. Let T be a pre-triangulated category, and let 5 : G → H be a morphism in T . Then
the following are equivalent.

(1) 5 is an isomorphism.

(2) The triangle G
5
→ H → 0→ ΣG is distinguished.

Proof. We have a morphism of triangles

G G 0 ΣG

G H 0 ΣG

5

5

75



so by the triangulated five lemma, Proposition 7.17, the morphism 5 is an isomorphism if
and only if the lower triangle is distinguished. �

7.3 Uniqueness issues

In the axioms for a pre-triangulated category, there are many postulates of the existence of
some object. However, as emphasized, there is no guarantee of uniqueness. We explore here
some situations where one can get a unique choice. These have significance because one can
use these simple criteria in order to build functors in favourable situations.

Lemma 7.19. Let T be a pre-triangulated category, and suppose we have a partial morphism of
distinguished triangles

G H I ΣG

G′ H′ I′ ΣG′.

6 ℎ

6′ ℎ′

If T (ΣG, I′) = 0 or T (I, H′) = 0, then there exists a unique dashed morphism making the diagram
commute.

Proof. By (TR3), some morphism exists, and we must show it is unique. Let 0, 1 : I → I′ be
two such morphisms. Then the morphism 0 − 1 satisfies

G H I ΣG

G′ H′ I′ ΣG′

6

0

ℎ

0−1
0

6′ ℎ′

so that Corollary 7.14 (and its dual) yield morphisms ΣG → I′ and I → H′ factorizing 0 −
1. Thus, if either of the assumptions of the lemma are true, 0 − 1 factors through the zero
morphism, so 0 = 1. �

Here is a more complex condition, which we can use to produce a useless but neat con-
dition for a cone to be unique.

Proposition 7.20. Let T be a triangulated category, and suppose we have a partial morphism of
distinguished triangles

G H I ΣG

G′ H′ I′ ΣG′

5

0

6

1

ℎ

Σ0

5 ′ 6′ ℎ′

and assume that T (H, G′) = 0 and T (ΣG, H′) = 0. Then there exists a unique dashed morphism
making the diagram commute.

Proof. Again, by (TR3), a morphism exists. We may assume that 0 = 0 and 1 = 0 by consid-
ering the difference of induced two dashed morphisms. Thus, we must show that given a
candidate dashed morphism 2 : I → I′, we have 2 = 0. Expanding these assumptions and
applying Corollary 7.14, we have a (non-commuting) diagram
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G H I ΣG

G′ H′ I′ ΣG′

5

0

6

0

ℎ

2
? @

0
5 ′ 6′ ℎ′

which provides for us, via an application of (TR3), a morphism of distinguished triangles

H I ΣG ΣH

G′ H′ I′ ΣG′

6

A

ℎ

?

−Σ 5

@ ΣA

5 ′ 6′ ℎ′

but since T (H, G′) = 0, we see that A = 0. Applying Corollary 7.14 again, we see that ? factors
through a map ΣG → H′, but since T (ΣG, H′) = 0, this means ? = 0. Since 2 factors through
?, we have 2 = 0. �

Corollary 7.21. Let 5 : G → H be a morphism in a pre-triangulated category T , and assume
T (H, G) = 0 and T (ΣG, H) = 0. Then 5 has a cone unique up to unique isomorphism of distin-
guished triangles.

Proof. Suppose we have two distinguished triangles,

G H I ΣG

G H I′ ΣG

5

∼

5

with the dashed morphism induced by (TR3). By Proposition 7.20, the assumptions of this
corollary imply that the morphism is unique, and it is an isomorphism by the triangulated
five lemma, Proposition 7.17. �

Given a sequence of maps
G → H → I,

one may wonder how many ways this occurs as part of a distinguished triangle. In general,
there could be many ways to extend it, but under the assumption of Lemma 7.19, one can
make sure it is unique.

Lemma 7.22. Let T be a pre-triangulated category, and suppose we have a pair of maps G
5
→ H

6
→ I

such that 6 ◦ 5 = 0. Suppose that T (ΣG, I) = 0. Then there is at most one distinguished triangle

G
5
→ H

6
→ I → ΣG.

Proof. Suppose that we have two; let ℎ8 : I → ΣG be the associated maps completing the
sequence to an exact triangle. Then we have a partial morphism

G H I ΣG

G H I ΣG

5 6

2 ∼

ℎ1

5 6 ℎ2

which induces a unique dashed isomorphism by Lemma 7.19. In particular, 2 ◦ 6 = 6, hence
(idH − 2) ◦ 6 = 0, so Corollary 7.14 says that idH − 2 factors through a morphism ΣG → I. By
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assumption, any such morphism is zero, so 2 = idH and ℎ1 = ℎ2. �

Conditions of the form T (ΣG, I) = 0 turn out to be practical, as such orthogonality prop-
erties show up in other situations.

7.4 Interesting triangles

Proposition 7.23. Let T be a pre-triangulated category, and let � be some indexing set. Suppose that
we have a family of distinguished triangles(

G8
58−→ H8

68−→ I8
ℎ8−→ ΣG8

)
8∈�

in T for which the coproducts ∐
8∈�

G8 ,
∐
8∈�

H8 ,
∐
8∈�

I8

exist. Then the triangle ∐
8∈�

G8

∐
8 58−−−→

∐
8∈�

H8

∐
8 68−−−−→

∐
8∈�

I8

∐
8 ℎ8−−−−→

∐
8∈�

ΣG8

is a distinguished triangle.

Proof. The strategy is to take a cone of the left morphism and show that one gets the correct
output. We have a distinguished triangle∐

8∈�
G8

∐
8 58−−−→

∐
8∈�

H8 −→ I′ −→
∐
8∈�

ΣG8

by (TR1), and by (TR3) induced morphisms of distinguished triangles

G8 H8 I8 ΣG8

∐
8∈� G8

∐
8∈� H8 I′

∐
8∈� ΣG8

58 68 ℎ8

∐
8 58

which combine into a morphism of triangles∐
8∈� G8

∐
8∈� H8

∐
8∈� I8

∐
8∈� ΣG8

∐
8∈� G8

∐
8∈� H8 I′

∐
8∈� ΣG8

∐
8 58

∐
8 68

∐
8 ℎ8

∐
8 58

and after application of T (−, F) for some F ∈ T and unraveling one more step, we have a
diagram

T (∐8 ΣH8 , F) T (∐8 ΣG8 , F) T (∐8 I8 , F) T (∐8 H8 , F) T (∐8∈� G8 , F)

T (∐8 ΣH8 , F) T (∐8 ΣG8 , F) T (I′, F) T (∐8 H8 , F) T (∐8∈� G8 , F)

where the bottom row is exact. Commuting out the coproducts on the top row and using
that the original triangles are exact yields that the top row is exact, so the five lemma implies
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that the middle vertical morphism is an isomorphism. By the Yoneda lemma, we deduce
that the morphism ∐

8∈�
I8 → I

is an isomorphism, and since the class of distinguished triangles is closed under isomor-
phism, we are done. �

While the above may seem somewhat innocuous, it has the following remarkable corol-
lary which is actually tremendously useful.

Corollary 7.24. Let T be a triangulated category, and let G, H ∈ T . Then the triangle

G ↩→ G ⊕ H � H
0→ ΣG

is distinguished. In particular, any distinguished triangle

G → 4 → H
0→ ΣG

is isomorphic to the first distinguished triangle.

Proof. The first statement follows by taking the direct sum of the two distinguished triangles

G
id→ G → 0→ ΣG, 0→ H

id→ H → Σ0,

where we note that Σ0 = 0. For the second, construct the obvious partial morphism of trian-
gles and apply (TR3) together with Proposition 7.17. �

The immense value of this corollary is that it allows us to identify an element as a direct
summand of another by exhibiting the existence of a suitable distinguished triangle. This
turns out to be surprisingly doable in many interesting situations.

7.5 Appendix: The five lemma

One of themost frequently used results in homological algebra is the five lemma. We dedicate
this appendix to proving it. The five lemma is primarily useful to us because it allows us to
prove Proposition 7.17, but it also has relevance when understanding extensions in Abelian
categories. We will aim to prove a generalization of the five lemma found in [KS06]. We
begin with a prerequisite lemma.

Lemma 7.25. [KS06, Lemma 8.3.12] LetA be an Abelian category, and suppose we have morphisms

G′
5
→ G →

6
→ G′′ inA such that 6 ◦ 5 = 0. Then the following are equivalent.

(1) The pair of morphisms form an exact sequence, i.e. the canonical map im 5 → ker 5 is an
isomorphism.

(2) For any ℎ : I → G such that 6 ◦ ℎ = 0, there is an epimorphism 5 ′ : I′→ I and a commutative
diagram

I′ I

G′ G G′′.

5 ′

0
ℎ

5 6
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Proof. (1)⇒ (2). The maps 5 : G′ → G and ℎ : I → G both factor through ker 6 ↩→ G. Thus,
we set I′ := G′ ×ker 6 I. By exactness, G′ → ker 6 is an epimorphism, and pullbacks of epi-
morphisms in Abelian categories are epimorphisms, so the map I′→ I is an epimorphism.

(2)⇒ (1). Take I = ker 6 and let ℎ : ker 6 ↩→ G be the canonical inclusion. We find an
epimorphism I′ � ker 6, but then the composition I′ → G′ → ker 6 is also necessarily epic,
which implies that G′→ ker 6 is epic, so im 5 � ker 6. �

Lemma 7.26. [KS06, Lemma 8.3.13] Let A be an Abelian category, and consider a commutative
diagram

G0 G1 G2 G3

H0 H1 H2 H3

5 0 5 1 5 2 5 3

where

(i) each row is a complex (i.e. adjacent morphisms compose to zero), and

(ii) G1 → G2 → G3 and H0 → H1 → H2 are exact.

Then the following statements hold.

(1) If 5 0 is an epimorphism and 5 1, 5 3 are monomorphisms, then 5 2 is a monomorphism.

(2) If 5 3 is a monomorphism and 5 0, 5 2 are epimorphisms, then 5 1 is an epimorphism.

Proof. The statements of (1) and (2) are dual, so it suffices to prove (1). As we endeavour to
prove 5 2 is a monomorphism, suppose we have a morphism 0 : I → G2 such that 5 2 ◦ 0 = 0.
We must prove that 0 = 0. By the commutativity of the diagram, we have

(I 0→ G2 → G3 5 3

↩→ H3) = (I 0→ G2 5 2

→ H2 → H3) = 0 =⇒ (I 0→ G2 → G3) = 0.

Using Lemma 7.25, we find some epimorphism I1 � I sitting in the solid diagram

F I1 I

G0 G1 G2 G3

H0 H1 H2 H3

01 0
0

5 0 5 1 5 2 5 3

where we observe that

(I1 01
→ G1 5 1

↩→ H1 → H2) = (I1 � I
0→ G2 5 2

→ H2) = 0.

Applying Lemma 7.25 again, we find an epimorphism F � B1 as indicated by the dashed
morphisms.

Now, here is a slightly tricky bit: let I0 := F ×H0 G0 be the pullback of 5 0 along F → H0.
Since pullbacks of epimorphims are epic (sinceA is Abelian), we have an epimorphism I0 �

F such that (I0 � F → H0) = I0 → G0 5 0

� H0. As a result, we have a commutative diagram
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I0 I1 I

G0 G1 G2 G3

H0 H1 H2 H3

00 01 0
0

5 0 5 1 5 2 5 3

where we note that the top left square in the diagram commutes since it commutes after
composition with the monomorphism 5 1. Finally, we now see that

(I0 � I1 � I
0→ G2) = (I0 00

→ G0 → G1 → G2) = 0

and therefore 0 = 0. �

Remark 7.27. The above proof is perhaps illuminated by the philosophy of generalized ele-
ments. What we start off with is an element 0 ∈ G2 such that 5 2(0) = 0. We then lift this to
an element 01 ∈ G1 which is sent to 0, and 01 is in turn lifted to an element 00 ∈ G0 which
is sent to 01, meaning that 0 is in the image of the composite of two adjacent morphisms, so
0 = 0. The repeatedly used Lemma 7.25 is just a formalization of these lifting steps (or most
of them).

Corollary 7.28: Five lemma. LetA be an Abelian category, and consider a commutative diagram
with exact rows

G0 G1 G2 G3 G4

H0 H1 H2 H3 H4

∼ ∼ ∼ ∼

inA, with isomorphisms as indicated. Then the middle vertical morphism is an isomorphism.

Proof. Apply Lemma 7.26 to the left part of the diagram and then to the right to see that the
middle morphism is both monic and epic, thus an isomorphism. �

7.6 Appendix: Adjoints of triangulated functors are triangulated

There is a somewhat tricky business in triangulated categories coming from the shift functor,
namely that one should really demand compatibility with it at all times, including e.g. with
natural transformations. Consider the following definition, which we hope is obviously a
natural one.

Definition 7.29. Let (�, �), (�′, �′) : T → T ′ be lax-triangulated functors. A natural trans-
formation  : �⇒ �′ is triangulated if

�Σ Σ�

�′Σ Σ�′

�

Σ Σ

�′

commutes.

Remark 7.30. These are sometimes called trinatural transformations, but we choose to avoid
this terminology due to its proximity to the completely unrelated notion of a dinatural trans-
formation.
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This definition gives rise to a 2-category TCat, the objects of which are triangulated cat-
egories, 1-morphisms are triangulated functors, and 2-morphisms are triangulated natural
transformations. Now, any 2-category automatically induces a notion of adjunction between
1-morphisms. In the case of the 2-category TCat, it yields the following:

Definition 7.31. Let (�, �) : T → T ′ and (�, �′) : T ′→ T be triangulated functors between
triangulated categories. We say that they form a triangulated adjunction (�, �) ` (�, �′) if � ` �
and the unit and counit are triangulated natural transformations.

One would like for ordinary adjunctions between functors which happen to have a trian-
gulated structure to yield a triangulated adjunction, but this is a non-trivial statement. As
such, we prove the following result.

Theorem 7.32. Let (�, �) : T ′ → T be a triangulated functor between triangulated categories. If
� has a left adjoint �, then there is a canonical triangulated structure on � for which the unit and
counit of the adjunction are triangulated.

Proof. We have a natural isomorphism � : � ◦Σ⇒ Σ ◦�. This yields a natural isomorphism

Σ−1�Σ−1 : Σ−1 ◦ �⇒ � ◦ Σ−1.

Let �′ : � ◦ Σ⇒ Σ ◦ � be the composition

�Σ �Σ�� ��Σ� Σ�.
�Σ� ��−1� �Σ�

One can check that this natural transformation is also implemented using the Yoneda lemma
and the chain of natural isomorphisms

T ′(�Σ−,−) � T (Σ−, �−)
� T (−,Σ−1�−)
� T (−, �Σ−1−)
� T ′(�−,Σ−1−) � T ′(Σ�−,−).

In particular, we conclude that �′ is a natural isomorphism. As a trivial remark, note that �
is a left adjoint and hence commutes with colimits, and so is automatically additive.

Before we check that (�, �′) is triangulated, let us assume it is the case, and check that
the unit � : 1 → �� and counit � : �� ⇒ 1 are then triangulated. First, note that the
compositions �� and �� are triangulated with shift compatibilities

�� ◦ ��′ : ��Σ⇒ Σ��, �′� ◦ �� : ��Σ⇒ Σ��.

To see that �Σ = Σ� ◦ (�′� ◦ ��), we have the commutative diagram

��Σ �Σ� �Σ��� ��Σ�� Σ��

�Σ� ��Σ Σ

�� �Σ�� ��−1��

�Σ��

�Σ��

��Σ� Σ�

��−1 �Σ

by naturality and one of the triangle identities. Checking that (�′� ◦��) ◦�Σ = Σ� is similar,
and uses the other triangle identity.

Now we show that (�, �′) is triangulated. Consider a distinguished triangle

G
5
→ H

6
→ I

ℎ→ ΣG
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in T . We must show that the induced triangle

�G
� 5
−→ �H

�6
−→ �I

�′G◦�ℎ−→ Σ�G

is distinguished. We will show that it is isomorphic to a distinguished triangle. For this, first
take the cone of � 5 to get a distinguished triangle

�G
� 5
→ �H

6′

→ I′
ℎ′→ Σ�G.

Now, applying �, we have a distinguished triangle

��G
�� 5
−→ ��H

�6′

−→ �I′
��G◦�ℎ′−→ Σ��G.

Let � : 1 ⇒ �� be the unit of the adjunction � ` �. By (TR3), we obtain a morphism of
distinguished triangles

G H I ΣG

��G ��H �I′ Σ��G

5

�G

6

�H

ℎ

� Σ�G

�� 5 �6′ ��G◦�ℎ′

which now allows us to define, for any F ∈ T ′, the map

T ′(I′, F) → T ′(I, �F), @ ↦→ �(@) ◦ �.

In particular, by applying T ′(−, F) to the triangle defining I′ and T (−, �F) to the top row
above, we get a commutative diagram

T (G, �F) T (H, �F) T (I, �F) T (ΣG, �F) T (ΣH, �F)

T ′(�G, F) T ′(�H, F) T ′(I′, F) T ′(F,Σ�G) T ′(F,Σ�H)

∼ ∼ ∼ ∼

with exact rows. It follows by the five lemma that T (I, �F) ∼−→ T ′(I, F), which implies
that for any morphism @ : I → �F, there is a unique morphism @′ : I′ → F such that
@ = �@′ ◦ �. This is the universal property of the unit, and we deduce that the morphism
�I → I′ corresponding to � is an isomorphism. That is, we have an isomorphism of triangles

�G �H �I Σ�G

�G �H I′ Σ�G

� 5 �6 �′G◦�ℎ

∼

� 5 6′ ℎ′

as desired. �

Remark 7.33. Note that by dualizing Theorem 7.32, we get that right adjoints of triangulated
functors are canonically triangulated. Observe that the proof relies on the functor in question
being triangulated and not just lax-triangulated.

Remark 7.34. The above proof is adapted from [Mur07, Thm. 47] (which is based on [Nee01,
Lemma 5.3.6]) and [Vil24].
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7.7 Appendix: The most elementary  -theory

Let - be some kind of geometric object. One of the fundamental tools available in all “geo-
metric” areas (say, differential or algebraic) is to study the vector bundles on -, and one of the
standard ways to do this is to consider invariants like Euler characteristics. In his work on
algebraic geometry, Grothendieck introduced  -theory, which one may see as the universal
receptacle of Euler characteristics.

While  -theory was initially defined in a concrete way, it was realized that many aspects
of  -theory were visible more clearly when one realized it as a purely categorical kind of
invariant. In this appendix, we will describe one way to define the easiest  -group, namely
 0, in the context of a triangulated category. Much the same strategy we use here can be
used to define  0 of a Quillen exact category as well. The idea is that the Euler characteristic
splits short exact sequences, sending the middle term to the sum of the adjacent terms.

Definition 7.35. Let T be a triangulated category. The zeroth  -group of T , denoted  0(T ),
is the quotient of the free Abelian group generated by isomorphism classes of objects in T ,
by the relation

[H] = [G] + [I] if ∃d.t. G → H → I → ΣG.

As implied above, we write [G] for the image of G ∈ T in  0(T ).

Remark 7.36. For any G, H ∈ T we have the distinguished triangle

G → G ⊕ H → H
0→ ΣG

which implies that
∀G, H ∈ T , [G ⊕ H] = [G] + [H] ∈  0(T ).

Furthermore, by the distinguished triangle

G → 0→ ΣG → 0

given by shifting the cone of the identity, we see that

∀G ∈ T , [ΣG] = −[G].

As a result, we could’ve instead defined  0(T ) as the commutative monoid whose elements
are isomorphism classes of objects in T and addition is given by taking direct sums, mod-
ulo the distinguished triangle relations. The above calculation would then show that it is
automatically a group.

While this definition seems perfectly good, it has a “flaw” of sorts which means one has
to be careful when applying it. The below is an example of the famous “Eilenberg swindle”.

Proposition 7.37. Let T be a triangulated category admitting infinite coproducts. Then  0(T ) � 0.

Proof. Let G ∈ T . Simply observe that

[G⊕ℕ] = [G ⊕ G⊕ℕ] = [G] + [G⊕ℕ]

and therefore [G] = 0. �

Remark 7.38. Because of this result, one often has to jump through some hoops, placing finite-
ness conditions on one’s objects, in order to get a non-trivial  0-group. For the sake of this
discussion, let us assume thatwe have a sensible understanding of the derived categoryD(A)
of an Abelian categoryA. A common fix is to consider the full subcategory of compact ob-
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jects.
Rather remarkably, the vast majority of  0-groups of interest can be formed using the

above machinery by choosing an appropriate triangulated category. Some exceptions where
it is tricker are in the world of operator algebras.

To get a small taste for how  -theory works, let’s prove an easy result.

Proposition 7.39. Let � : T → T ′ be a triangulated functor of triangulated categories. Then �
induces a group homomorphism

 0(�) :  0(T ) →  0(T ′).

Proof. The recipe for the morphims is simple:

 0(�) : [G] ↦→ [�G].

We must show that this is well-defined and a group homomorphism. However, this is a
trivial matter since � preserves distinguished triangles:

G → H → I → ΣG { �G → �H → �I → Σ�G

means that
[H] = [G] + [I] { [�H] = [�G] + [�I].

�

There is an independent way one can define the  0-group of an Abelian category. We
include it here sowe can prove a similar result as above, except about cohomological functors.

Definition 7.40. LetA be anAbelian category. Then 0(A) is the quotient of the freeAbelian
group on the isomorphism classes ofA by the relation

[H] = [G] + [I] if ∃s.e.s 0→ G → H → I → 0.

Remark 7.41. The Eilenberg swindle works just as well for Abelian categories as it does for
triangulated ones. As a result, one sees that whenever A admits infinite (co)products, one
will have  0(A) = 0. For example,  0(Modℤ) = 0. On the other hand, as mentioned ear-
lier, these kinds of “issues” can be fixed by considering compact objects. In the case of this
example, the compact objects are exactly the finitely generated Abelian groups.

In a sense, the belowwill illustrate how 0(T ) acts as a receptacle for Euler characteristics,
supposing the reader is familiar with the latter (and setting aside the fact that it is, in a sense,
by definition).

Lemma 7.42. Consider a long exact sequence of the form

0→ F0 30
→ F1 31

→ · · · 3
=−1
→ F= 3=→ 0

in an Abelian categoryA. Then

[F0] =
=∑
8=1
(−1)8[F 8] ∈  0(A).

Proof. At any stage of the exact sequence, we can extract an exact sequence

0→ im 38−1 → F 8 → im 38 → 0
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and thus have

[F 8] = [im 38−1] + [im 38] =⇒ [im 38−1] = [F 8] − [im 38].

At 8 = 1, this says [F0] = [F1] − [im 31]. Continuing inductively, one gets the result. �

Proposition 7.43. Let� : T → A be a cohomological functor, and assume that for all G ∈ T , at most
a finite number of the objects �Σ8G, 8 ∈ ℤ, are non-zero. Then � induces a group homomorphism

 0(T ) →  0(A), [G] ↦→
∑
8∈ℤ
(−1)8[�Σ8G].

Proof. To see this, just note that if we have a distinguished triangle

G → H → I → ΣG

then we have a long exact sequence

· · · → �Σ8−1I → �Σ8G → �Σ8H → �Σ8I → �Σ8+1G → · · ·

which by our assumption has only finitely many non-zero terms. For the sake of simplicity,
we assume everything lies in the range [0, =], i.e.

0→ �G → �H → �I → �ΣG → · · · → �Σ=H → �Σ=I → 0.

Applying the lemma, we see that

[�G] = [�H] − [�I] + [�ΣG] − [�ΣH] + [�ΣI] − [�Σ2G] + · · ·

and upon rearranging terms, one has

=∑
8=0
(−1)8[�Σ8H] =

=∑
8=0
(−1)8[�Σ8G] +

=∑
8=0
(−1)8[�Σ8I]

as desired. �

Remark 7.44. Just to give some clarity: at the start of the appendix, we mentioned that what
we have done above can be easily modified to give a definition of  0 for Quillen exact cat-
egories. The way to do this is to take the free Abelian group on the isomorphism classes,
as always, and then quotient that by the obvious relations imposed by the admissible exact
sequences.
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8 Localizations of triangulated categories

We have discussed the topic of localizing a category at some collection of arrows. In the
Abelian/stable case, one can usually pass from working with an ordinary category to work-
ing with a triangulated category, and in many cases, working with the localization of this
other category ismore convenient. Thus, we are compelled to explainwhat localization looks
like in the context of triangulated categories.

While much of the theory is the same, the additive nature of triangulated categories al-
lows one to encode the weak equivalences in a system of objects one wishes to equate to
zero, making the theory of localizations of triangulated categories very similar to the theory
of quotients in ordinary algebra. There are more general settings in which one may localize
triangulated categories in a nice way, but we will not discuss them.

8.1 Triangulated subcategories & null systems

Definition 8.1. Let T be a pre-triangulated category with shift denoted Σ. A pre-triangulated
subcategory of T consists of an additive subcategory T ′ ⊆ T such that ΣT ′ = T ′, along with
a pre-triangulated structure on T with shift given by the restriction of Σ and for which the
inclusion

T ′ ↩→ T
is a triangulated functor.

Definition 8.2. Let T be a pre-triangulated category. A replete full subcategory N of T is a
null system if:

(N1) 0 ∈ N .

(N2) N is closed under shifts: ΣN = N .

(N3) N is closed under extensions: for any d.t. G → H → I → ΣG in T , if G, I ∈ N then
H ∈ N .

Exercise 21. Let T be a pre-triangulated category, and let N be a null system in T . Show
that N satisfies the following stronger version of (N3): for any distinguished triangle

G → H → I → ΣG

in T , if any two of G, H, I are in N then so is the third.
In fact, prove that these are both equivalent to the following a priori different statement:

(N3’) N is closed under cones: for any d.t. G → H → I → ΣG in T , if G, H ∈ N then I ∈ N .

Proposition 8.3. Let T be a pre-triangulated category, and letN be a replete full subcategory. Then
the following statements are equivalent.

1. N is a null system.

2. N is non-empty and can be endowed with the structure of a pre-triangulated category making
it into a pre-triangulated full subcategory of T .

Furthermore, the same statements hold with “pre-triangulated” replaced by “triangulated”.

Proof. (1) implies (2). First, note that N is an additive subcategory of T . Indeed, it is clearly
pre-additive, and furthermore, contains 0 by (N1), and is closed under finite direct sums by
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(N3) together with Corollary 7.24. In particular, the inclusionN ↩→ T is an additive functor.
Since ΣN = N , the shift on T restricts to a functor Σ|N : N → N . Now, let a triangle in N
be distinguished if and only if it is distinguished in T . Then N is pre-triangulated: indeed,
(TR1) and (TR2) are clear, and (TR3) follows from N being a full subcategory. When T is in
addition triangulated, (TR4) follows for N similarly.

It is clear that N ↩→ T is a triangulated functor, so we are done.
(2) implies (1). Since N ↩→ T is triangulated, it is additive, hence 0 ∈ N agrees with

0 ∈ T . That is, (N1) is satisfied. Since N is a pre-triangulated subcategory, ΣN = N is
satisfied by definition, so (N2) holds. To see that (N3) holds, we use that it is equivalent to
(N3’) by Exercise 21, and note that if we have a diagram of solid arrows

G H I ΣG

G H I′ ΣG

∼

where the top row is distinguished in N and the bottom row is distinguished in T , then
by Proposition 7.17 we have an induced isomorphism I � I′. Therefore, I′ ∈ N since N is
replete. �

Remark 8.4. As a slogan, we can say that null systems are exactly replete full triangulated
subcategories.

8.2 The Verdier quotient

Let N be a null system in a pre-triangulated category T . We want to make sense of what
it would mean to take the quotient T /N . The idea we want to utilize now is based on the
following basic fact about pre-triangulated categories: a morphism 5 : G → H is an isomor-
phism if and only if

G
5
→ H → 0→ ΣG

is a distinguished triangle. This gives us a way to conceptualize which morphisms should
be sent to isomorphism in T /N . It should be exactly those 5 : G → H for which there is a
distinguished triangle

G
5
→ H → I → ΣG

where I ∈ N .

Notation 8.5. Let T be a pre-triangulated category, and letN be a null system. We form the
collection of morphism

S(N) := { 5 : G → H | ∃d.t. G
5
→ H → I → ΣG such that I ∈ N}.

Definition 8.6. Let T be a pre-triangulated category, and let N be a null system. Then the
Verdier quotient of T by N is the localization

T /N := T [S(N )−1].
The rest of this subsection is dedicated to giving a well-chosen triangulated structure on

T /N whenever T is triangulated, and showing it is well-behaved.

Proposition 8.7. Let T be a triangulated category, and let N be a null system in T . Then S(N) is
a multiplicative system.
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Proof. Note thatN is a null system in T if and only ifN op is a null system in T op, so it suffices
to check that N is a right multiplicative system.

(1) S(N) contains the identities: since 0 ∈ N , in fact every isomorphism is contained in
S(N).

(2) S(N) is closed under composition: given morphisms G
5
→ H

6
→ I, let 2 5 (resp. 26 , 26◦ 5 )

be a cone of 5 (resp. 6, 6 ◦ 5 ). Applying (TR4), we have a distinguished triangle

2 5 → 26◦ 5 → 26 → Σ2 5 .

Since 2 5 and 26 are in N and N is closed under extension, it follows that 26◦ 5 is in N ,
so 6 ◦ 5 ∈ S(N).

(3) S(N) satisfies (M1): consider G′ B← G
5
→ H, where B ∈ S(N). Using (N2) and (TR2), we

deduce the existence of a I ∈ N and a distinguished triangle

I
ℎ→ G

B→ G′→ ΣI.

Taking the cone of 5 ◦ ℎ and applying (TR3), we get

I G G′ ΣI

I H H′ ΣI

ℎ

5

B

6

5 ◦ℎ C

and one notes that C ∈ S(N) since I ∈ N .

(4) S(N) satisfies (M2): it suffices to show that given a solid diagram

I G H I′B 5 C

where 5 ◦ B = 0, a dashed arrow C exists such that C ◦ 5 = 0. Suppose we are given the
solid diagram. Taking a cone 6 : H → 2 5 of 5 , weak cokernel property of Corollary 7.14
yields a map ℎ : 2 5 → H such that ℎ ◦ 6 = 5 , and we may take a cone C : H → I′ of ℎ. All
in all, we have

I G 2 5 ΣI

H

I′

B 6

5 ℎ

C

such that C ◦ 5 = C ◦ ℎ ◦ 6 = 0.

This completes the proof. �

The above lets us apply the non-functorial derived functor machinery later, which is ben-
eficial in many cases, as functoriality even on the level of homotopy categories can be slightly
tricky to arrange.
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Before we can place a triangulated structure on T /N , we have to find a shift functor on
it. For this, consider the localization functor � : T → T /N and note that the composition
� ◦Σ is homotopical: we have that ΣS(N) = S(N), so for all 5 ∈ S(N) the morphism �Σ 5 is
an isomorphism. By universal property of the localization, this means we have an induced
functor

T T

T /N T /N

Σ

� �

Σ

which is our prospective shift. Note that �Σ = Σ�.

Exercise 22. Show that the above functorΣ : T /N → T /N is an automorphism,with inverse
induced from the inverse of Σ : T → T . Hint: use the uniquenss in the universal property.

Theorem 8.8. Let T be a triangulated category, and let N be a null system. Then the following
statements hold,

(1) T /N is an additive category, and the localization functor � : T → T /N is additive.

(2) Let a triangle G → H → I → ΣG in T /N be distinguished if it is isomorphic to the image under
� of a distinguished triangle in T . Then this endows T with the structure of a triangulated
category.

(3) With the triangulated structure from (2), the functor � : T → T /N is triangulated.

Proof. (1) This is an immediate corollary of Theorem 5.26, given that S(N) is a multiplicative
system.

(2) We sketch how to show that (TR1)–(TR4) hold. The only non-trivial one is (TR1). Con-

sider a morphism 5 B− : �(G) → �(H), i.e. maps G B← G′
5
→ H in T /N , which we note is the

same as �( 5 ) ◦ �(B)−1. Take a cone 2 5 of 5 in T ; we then have an isomorphism of triangles

�(G′) �(H) �(2 5 ) Σ�(G′)

�(G) �(H) �(2 5 ) Σ�(G′)

�(B) ∼

�( 5 )

∼

5 B−1

where the upper triangle is distinguished, hence so is the lower one. For (TR2), just lift the
required distinguished triangles to ones in T and apply (TR2) there. The strategies for (TR3)
and (TR4) are very similar.

(3) We have that �Σ = Σ�, and by definition, � sends distinguished triangles to distin-
guished triangles. �

Exercise 23. Complete the proof of (2) in Theorem 8.8.

From now on, we tacitly endow T /N with the triangulated structure provided above. In
this context, one can restate the universal property of the localization in terms of triangulated
categories.

Theorem 8.9. Let T be a triangulated category, let N be a null system, and let � : T → T /N be
the localization functor. Then the following statements hold.

(1) For all G ∈ N , we have �(G) � 0.

(2) T /N is the universal pre-triangulated category satisfying (1): for any triangulated functor � :
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T → D such that �G � 0 for all G ∈ N , there is a unique triangulated functor �′ : T /N → ℰ
such that � = � ◦ �.

(3) T /N is the universal source of cohomological functors out of T sending N to zero: for any
cohomological functor � : T → A such that �G � 0 for all G ∈ N , there is a unique
cohomological functor �′ : T /N → A such that � = � ◦ �′.

Proof sketch. (1) For any G ∈ N , the distinguished triangle 0 → G → G → Σ0 shows that
0→ G is in S(N). In particular, 0 � �(0) � �(G).

(2) If � sends everything in N to zero, then for any B : G → H in S(N), taking a cone and
applying � yields

�G
�B−→ �H −→ 0 −→ Σ�G.

Therefore, �B is an isomorphism. In particular, the universal property of localizations then
guarantees a unique functor �′ : T /N → D. To see that it is triangulated, one needs two
things: that it commutes with the shift (up to a specified natural isomorphism), and that
it sends distinguished triangles to distinguished triangles. For the former, use the natural
commutation isomorphism for � along with the universal property of localizations. For the
latter, use the defining properties of �′ and distinguished triangles in T /N .

(3) The details of this are similar to (2). �

8.3 Thick subcategories

Definition 8.10. Let � : C → D be a functor between categories with zero objects. We define
the kernel of � to be the full category of C spanned by objects sent to zero by �, i.e.

ker � := {G ∈ C | �G � 0}.
The kernel of a functor is by definition a replete full subcategory. Consider the localiza-

tion functor � : T → T /N of a Verdier quotient. As explained, we haveN ⊆ ker �. Is this an
equality? In general, the answer is no, and for a very simple reason: the kernel ker � is closed
under taking direct summands. Indeed, consider the general situation of the definition, and
assume that � is an additive functor between additive categories. If we have �(G ⊕ H) � 0,
then we have �G ⊕ �H � 0, and this can only happen if �G � �H � 0.

Definition 8.11. Let T be a pre-triangulated category. A thick (pre-)triangulated subcategory
T ′ of T is a full (pre-)triangulated subcategory which is closed under summands. That is, if
G ⊕ H ∈ T ′, then G, H ∈ T ′.

What we have observed is that ker � is a thick triangulated subcategory of T . This is not
necessarily true of N , so clearly it is not necessary that it is equal to ker �.

Notation 8.12. Let T be a triangulated category, and let C be a subcategory. We denote by
thick(C) the smallest thick triangulated subcategory of T containing C .

Our goal for this subsection is to prove that ker � = thick(N ). As a result, we will also
be able to deduce that there is a canonical isomorphism of triangulated categories T /N �
T /ker �. Fix a triangulated category T and a null system N , and denote the localization
functor by � : T → T /N .

Exercise 24. Show that (T ,S(N)) is a pseudo-homotopical category, i.e. show that S(N)
satisfies the 2-out-of-3 property.

Exercise 25. Let � : T → T ′ be a triangulated functor between triangulated categories.
Check that ker � inherits a triangulated structure from T .
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Lemma 8.13. If a morphism

G
B← G′

5
→ G

in T /N is in the equivalence class of the identity, then 5 ∈ S(N).

Proof. By assumption, we have a diagram

G′

G G′′ G

G

B 5

C

#

)

ℎ

idG
idG

where C ∈ S(N). By Exercise 24, ),# ∈ S(N). But now # = 5 ◦ ), so the same property
yields 5 ∈ S(N). �

Lemma 8.14. Consider a morphism
G

B← G′
6
→ H

in T /N . Then the following statements are equivalent.

(1) The morphism 6B−1 is invertible.

(2) There are morphisms 5 : H′→ G′, ℎ : H → I′ in T such that 6 ◦ 5 , ℎ ◦ 6 ∈ S(N).

Proof. Assume (2) holds. Then �(6 ◦ 5 ) and �(ℎ ◦ 6) are invertible, and so see that

�(6) ◦ �( 5 ) ◦ �(6 ◦ 5 )−1 = id, �(ℎ ◦ 6)−1 ◦ �(ℎ) ◦ �(6) = id

so that �(6) is invertible. Now, �(B) is invertiblle, and 6B−1 = �(6) ◦ �(B)−1, so 6B−1 is invert-
ible.

Assume now that (1) holds. Wemust find suitable 5 and ℎ. To this end, note that we have
an inverse �(6)−1 = 5 C−1 : �(H) → �(G′) displayed by the zigzag

H
C← H′

5
→ G′

and composing this with �(6), we see that

H
C← H′

6◦ 5
→ H

is in the equivalence class of idH . By Lemma 8.13, 6 ◦ 5 ∈ S(N). Performing a dual compu-
tation produces the morphism ℎ. �

Proposition 8.15. Consider an object G ∈ T . Then the following are equivalent.

(1) The unique morphism G → 0 in T maps to an isomorphism in T /N .

(2) G ∈ ker �.

(3) There exists some H ∈ T such that G ⊕ H ∈ N .

In other words, ker � = thick(N ).
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Proof. The equivalence between (1) and (2) is clear. We show that (1) and (3) are equivalent.
Suppose that �(G) → 0 is an isomorphism. By Lemma 8.14, we can find some H ∈ T and
somemorphism 0→ ΣH such that the zero map G → 0→ ΣH is in S(N). On the other hand,
we have a distinguished triangle

H → G ⊕ H → G
0→ ΣH

so that Σ(G ⊕ H) is a cone of G 0→ ΣH, hence is in N . We conclude that G ⊕ H ∈ N .
Conversely, assume (3). Given G⊕ H ∈ N , the same distinguished triangle as above shows

that G 0→ ΣH is in S(N). We finally observe that the maps

0→ G → 0, G → 0→ ΣH

are thus both in S(N), so G → 0 is sent to an isomorphism in T /N by Lemma 8.14. �

Corollary 8.16. Let 5 : G → H be a morphism in T . Then 5 is sent to an isomorphism in T /N if
and only if any cone of 5 is a direct summand of an object in N .

Corollary 8.17. Let T be a triangulated category, and let N be a null system in T . Then there is a
canonical isomorphism of categories

T /N � T /thick(N ).

Proof. One easily checks that T /thick(N ) satisfies the same universal property as T /N . �

8.4 Derived functors for triangulated categories

We have provided (at least) two bits of machinery for constructing derived functors in the
context of ordinary categories. However, in the context of triangulated categories, one natu-
rally wants a slightly different context. Ordinarily, one works in the 2-category Cat, but here,
we really want to work in another 2-category consisting just of the triangulated categories.

Definition 8.18. We define a strict 2-category TCat as follows.

★ For objects, we have triangulated categories.

★ For 1-morphisms, we have triangulated functors (�, �) where � : T → T ′ and � :
� ◦ Σ⇒ Σ′ ◦ � is a specified natural isomorphism.

★ For 2-morphisms (�, �) ⇒ (�′, �′)we have natural transformations � : �⇒ �′ compat-
ible with the specified commutation natural isomorphisms, i.e.

� ◦ Σ Σ′ ◦ �

�′ ◦ Σ Σ′ ◦ �′

�

�Σ Σ′�

�′

commutes.
One then mimicks the definition of an (absolute) Kan extension in Cat to get a definition

of (absolute) (total) derived functors in the context of triangulated categories. This is straight-
forward to do, so we do not spell it out. Furthermore, as the proofs involving deformations
are in essense purely formal, they naturally extend very easily to the above context, though
we replace the notion of a relative category (C ,,) with that of a “Verdier pair” (T ,N) of a
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triangulated category T and a null system N in T .

Definition 8.19. Let � : T → T ′ be a triangulated functor, and let N (resp. N ′) be a null
system in T (resp. T ′). Consider a full triangulated subcategory C of T . We say that C is
�-injective (with respect to N and N ′) if the following conditions are satisfied:

(1) �(N ∩ C) ⊆ N ′.

(2) For all G ∈ T , there is an object G′ ∈ C and a morphism G → G′ in S(N).

Dually, we say C is �-projective if it satisfies (1) above, and the following condition:

(2’) For all G ∈ T , there is an object G′ ∈ C and a morphism G′→ G in S(N).

We will say T has enough �-injectives (resp. �-projectives) if there exists a full triangulated
�-injective (resp. �-projective) category C .

Theorem 8.20. Let � : T → T ′ be a triangulated functor between triangulated functors equipped
with null systems N and N ′. Then the following statements hold.

(1) Suppose that there exists enough �-injectives. Then � has an absolute total right derived functor,
and it is a triangulated functor.

(2) Suppose that there exists enough �-projectives. Then � has an absolute total left derived functor,
and it is a triangulated functor.

Furthermore, in both of the above situations, the absolute total right/left derived functors are also
absolute left/right Kan extensions in TCat.

Proof. (1) and (2) are dual, so it suffices to prove only one of them. We prove (1). To this
end, we wish to apply Theorem 6.19. Let C be our promised full triangulated subcategory
of �-injectives with respect to N and N ′. We see by assumption that (a) in the theorem is
certainly satisfied. To see that (b) is satisfied, note that the weak equivalences in C are exactly
the morphisms which have a cone inN ∩C , which is sent toN ′ under �. Therefore, we may
apply Theorem 6.19 to see that an absolute total right derived functor R� : T /N → T ′/N
exists, and furthermore, that it is given by a composition

T /N &→ C/(N ∩ C) �
′
→ T ′/N ′.

To see thatR� can bemade into a triangulated functor, it suffices to see that the above functors
& and �′ are triangulated. However, �′ is induced by the universal property Theorem 8.9,
and& is a quasi-inverse of the triangulated equivalence C/(N ∩C) ∼−→ T /N also induced by
this universal property from the inclusionC ↩→ T . Therefore, both of themare automatically
triangulated functors.

That the resulting functor is also a total left Kan extension in TCat, it suffices to note that
the proof of Theorem 6.19 (and in partcular Lemma 6.18) can be carried out entirely internally
to this 2-category. �

Remark 8.21. Of course, an obvious version of pseudofunctoriality also holds in this setting.
In particular, given triangulated functors T �→ T ′ �→ T ′′ between triangulated categories
with null systems N , N ′, and N ′′, along with distinguished �-injectives C ⊆ T and �-
injectives C ′ ⊆ T ′, there is a canonical natural transformation of triangulated functors

R(� ◦ �) ⇒ R� ◦R�

and this is a natural isomorphism if �C ⊆ C ′.
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9 Localization sequences & recollements of triangulated categories

In the theory of localizations of categories, there is something called Bousfield localization.
Essentially, it concerns a way in which one can recognize and recover a localization from
certain other data. In the “stable” setting of triangulated categories, it takes on a particularly
simple form, which is the topic of this lecture. It’s a useful thing to learn about for several
reasons:
(1) Localization sequences, or rather recollements, appear often in nature, and give a nice

formalism for explaining “gluing” phenomena in many situations, such as in algebraic
geometry. Often, in topics where one is trying to do geometry abstractly, one will
seek recollements as a form of aid, indicating e.g. what should be considered open
and closed.

(2) Understanding the theory in the special case of triangulated categories is useful in mo-
tivating the general theory of Bousfield localizations.

(3) The proofs involved are tremendously helpful in demonstrating how one handles the
machinery of a tringulated category, andgive useful intuition for topics like t-structures.

9.1 Orthogonal complements, & adjoints arising from them

Definition 9.1. Let T be a triangulated category, and let C ⊆ T be a full subcategory. Define
the full subcategories

C⊥ := {H ∈ T | ∀G ∈ C , T (G, H) � 0},
⊥C := {H ∈ T | ∀G ∈ C , T (H, G) � 0}.

Proposition 9.2. Let T be a triangulated category, and let T ′ be a triangulated subcategory. Then
the following statements hold.

(1) T ′⊥ and ⊥T ′ are thick replete full triangulated subcategories of T .

(2) T ′ ∩ T ′⊥ ' {0} ' T ′ ∩ ⊥T ′.

(3) T ′ ⊆ ⊥(T ′⊥) and T ′ ⊆ (⊥T ′)⊥.

Proof. (1) By definition, T ′⊥ is full; that it is furthermore replete is trivial. To see that it is
closed under direct summands, observe that if G, H ∈ T ′⊥, then for all I ∈ T ′

0 � T (I, G ⊕ H) � T (I, G) ⊕ T (I, H) =⇒ T (I, G) � T (I, H) � 0.

It remains to see that T ′⊥ is a triangulated subcategory. By Proposition 8.3, it suffices to check
that T ′⊥ is a null system. Clearly, 0 ∈ T ′⊥. Next, if G ∈ T ′⊥, then for all I ∈ T ′ we have

T (I,ΣG) � T (Σ−1I, G) � 0

since Σ−1I ∈ T ′, on account of T ′ being a triangulated subcategory of T . Finally, we need
to check that T ′⊥ is closed under extensions. For this, consider a distinguished triangle

G → G′→ G′′→ ΣG

where G, G′′ ∈ T ′⊥. Applying T (I,−), we have the exact sequence

0 = T (I, G) → T (I, G′) → T (I, G′′) = 0

so that T (I, G′) � 0 as desired.
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(2) If G ∈ T ′ ∩ T ′⊥, then for all I ∈ T ′ we have

T ′(I, G) � 0 � T ′(I, 0)

so by the Yoneda lemma, G � 0.
(3) Let G ∈ T ′. If I ∈ T ′⊥, then clearly T (G, I) = 0, so G ∈ ⊥(T ′⊥).
The remaining statements are dual. �

Proposition 9.3. Let T be a triangulated category, and suppose we have a replete full subcategory
T ′ of T satisfying the following properties.

(a) For all G ∈ T , there is a distinguished triangle

G′→ G → G′′→ ΣG′

where G′ ∈ T ′ and G′′ ∈ (T ′)⊥.

(b) ΣT ′ ⊆ T ′.

Then the inclusion �′ : T ′ ↩→ T admits a right adjoint �′ : T → T ′ given by G ↦→ G′, and for all
G ∈ T the distinguished triangle in (a) has the form

�′(G) → G → G′′→ Σ�′(G)

where �′(G) → G is the counit of the adjunction.

Proof. The idea is that the distinguished triangle in (a) gives us everything.
We produce a right adjoint to �′. For G ∈ T , pick a distinguished triangle as in (b) and let

�′(G) := G′. We show that this object represents the functor T (�′(−), G) : T ′ → Ab. For this,
just apply T (H′,−)with H′ ∈ T ′ to the induced distinguished triangle

Σ−1G′′→ �′(G) �G→ G → G′′

to get, using Proposition 7.13, the exact sequence

0 (1)= T (H′,Σ−1G′′) → T (H′, �′(G))
�G,∗→ T (H′, G) → T (H′, G′′) = 0

so that we have a natural isomorphism T (H′, �′(G)) ∼−→ T (H′, G), i.e. the natural isomorphism

�G,∗ : T ′(−, �′(G)) ⇒ T (�′(−), G).

The rest now follows by abstract nonsense. �

9.2 Short exact sequences of triangulated categories

We introduce the below terminology, which is not entirely standard.

Definition 9.4. A (short) exact sequence of triangulated categories is a pair of functors

T ′ 8−→ T
?
−→ T ′′

between triangulated categories such that

(1) the functor 8 is fully faithful, and has essential image a (definitionally replete) thick
triangulated subcategory of T ,
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(2) the functor ? is essentially surjective, and

(3) ? exhibits T ′′ as the Verdier quotient T /8(T ′) in the strict sense, i.e. ? induces an iso-
morphism of categories T /8(T ′) � T ′′.

We say it is a weak exact sequence if the condition in (3) only holds up to equivalence.

Remark 9.5. We see that, by definition, any null system (i.e. replete full triangulated subcat-
egory) N in T induces a canonical exact sequence

N ↩→ T � T /N .

Furthermore, basically also by definition, all exact sequences can be written in this form up
to equivalence.

Exercise 26. Define a suitable notion of morphism of exact sequences of triangulated cat-
egories. Show that any exact sequence of triangulated functors can be written in the form
indicated in the above remark.

In traditional settings, one has the following intuition: given a short exact sequence of
Abelian groups

0→ �→ �→ � → 0,

we may think of � as a “sum” of � and �. Of course, it need not be an actual direct sum:
indeed, such a sequence exhibits � as � ⊕ � if and only if it splits. On the other hand, it is
still useful to think of extensions as describing some potentially non-trivial way to combine
� with � to get �.

In the non-Abelian setting, such as an exact sequence of groups

1→ � → �→  → 1

one still has this intuition, but one loses the ability to detect that � = � ×  using splitting.
More precisely, if it splits on the left, all is as usual; if it splits on the right, however, one
cannot know that � � � ×  , as there are examples where this fails. These examples are
provided by semidirect products.

For triangulated categories, the situation most resembles that of the Abelian case. This is
no surprise, as triangulated categories model “homotopy Abelian” or “stable” phenomena,
wherewehave some formof commutativity. For example, wewill see that splitting on the left
is the same as splitting on the right. On the other hand, the setting of triangulated categories
is also more subtle, and in this way has some of the flavour of the non-Abelian case: there
are several ways in which one side can split (given by having a left or right adjoint), and even
in the presence of a splitting, one cannot reconstruct T from T ′ and T ′′. In a sense, this last
subtlety is a deficiency of triangulated categories specifically, as in enhanced contexts (such
as dg-categories, or stable∞-categories) it disappears.

We will be interested in exact sequences with nice properties.

Definition 9.6. An exact sequence

T ′ 8−→ T
?
−→ T ′′

is called a

(1) localization sequence if 8 and ? admit right adjoints;

(2) colocalization sequence if 8 and ? admit left adjoints.

(3) recollement if it is both a localization sequence and a colocalization sequence.
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9.3 A recognition theorem for localizations

Theorem 9.7. Suppose we have an adjunctionD C ,
!

'

a between categories. Let,! (resp.,')

be the wide subcategory of C (resp.D) spanned by those morphisms sent to isomorphisms by ! (resp.
by '). Then the following statements hold.

(1) ' is fully faithful if and only if the induced functor !′ : C[,−1
!
] → D is an equivalence.

(2) ! is fully faithful if and only if the induced functor '′ : D[,−1
'
] → C is an equivalence.

Proof. The statements (1) and (2) are dual, so it suffices to prove (1). By Lemma 4.3, we know
that ' is fully faithful if and only if the counit � : !' ⇒ 1D is a natural isomorphism, so we
must show that this occurs if and only if !′ is an equivalence. Let � : 1C ⇒ '! be the unit,
and let �! : C → C[,−1

!
] be the localization functor.

Assume that � is a natural isomorphism. We show that �!' is an inverse to !′. One
composition is easy:

!′�!' � !' � 1.

Here, we used the definition of !′, and the counit � : !' � 1. For the other direction, we
use that, by Lemma 4.3, the natural transformation !� is a natural isomorphism; in particu-
lar, every component of � is thus contained in,!, so � is a weak natural equivalence. One
deduces that �!� : �! ⇒ �!'! is a natural isomorphism, so

�!'!
′�! � �!'! � �!

which by universal property implies that �!'!′ � 1.
Conversely, assume that !′ : C[,−1

!
] ' D. We show that 1D is left adjoint to !' with

counit �; in that case, the adjunction mapD(G, H) � D(G, !'H) tells us that the counit com-
ponents �H : !'H → H are isomorphisms. So, to this end, note that for any category D′,
composition with ! gives a fully faithful functor !∗ : Fun(D ,D′) → Fun(C ,D′), as it is natu-
rally isomorphic to the composite

Fun(D ,D′) Fun(C[,−1
!
],D′) Fun,!

(C ,D′) Fun(C ,D′).∼
(◦!′)

∼
(◦�!)

Choosing D′ = D, composition with ! gives a fully faithful functor Fun(D ,D) →
Fun(C ,D), and in particular, we may find a natural transformation �′ : 1D ⇒ !' in the
preimage of !� : !⇒ !'!, so that !� = �′!. This �′ will be our unit. It remains to check the
triangle identities; from the ones for the adjunction ! ` ', we have

id! = �! ◦ !� = �! ◦ �′! = (� ◦ �′)!

which provides one of the triangle identities. For the other, note that we have

id' = '� ◦ �' =⇒ id!' = !'� ◦ !�' = !'� ◦ �′!'.

This completes the proof. �

Remark 9.8. Note that the above theorem necessarily only holds up to equivalence, i.e. in the
“weaker” sense of localization. Inspecting the proof shows that this is essentially unavoid-
able.
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Corollary 9.9. Suppose we have an adjunction T ′ T ,
!

'

a between triangulated categories. Let

N! = ker ! and N' = ker'. Then the following statements hold.

(1) ' is fully faithful if and only if ! induces an equivalence of triangulated categories T /N! ' T ′.

(2) ! is fully faithful if and only if ' induces an equivalence of triangulated categories T ′/N' ' T .

Proof. (2) is dual to (1), so we prove (1). Let,! be the morphisms in T sent to isomorphisms
by !. By Theorem 9.7, ' is fully faithful if and only if ! induces an equivalence T [,−1

!
] ' T ′.

Now, simply note that ,! = S(N!). Indeed, ! 5 is an isomorphism if and only if its cone
is zero, if and only if the cone of 5 is in ker ! = N!. Furthermore, note that the induced
equivalence is triangulated by universal property. �

9.4 Properties of the adjoints in localization sequences

Lemma 9.10. Let � : C ↩→ D be a fully faithful functor. If � has a right adjoint � ` ', then ' is
essentially surjective.

Proof. By Lemma 4.3, since � is fully faithful, we know that the unit � : 1⇒ '� is a natural
isomorphism. In particular, for any G ∈ C , we have G � '�G. �

Theorem 9.11. Suppose we have an exact sequence of solid arrows

T ′ T T ′′.8 ?

8' ?'

` `

Then the following statements hold.

(1) If 8 has a right adjoint 8', then 8' is essentially surjective.

(2) If ? has a right adjoint ?', then ?' is fully faithful.

(3) In the situation of (2), ?' induces an equivalence T ′′ ' 8(T ′)⊥ with quasi-inverse given by the
composite

8(T ′)⊥ ↩→ T
?
→ T ′′.

Proof. (1) Since 8 is fully faithful, we are done by the above lemma.
(2) The idea is to explot Theorem 9.7, or rather, Corollary 9.9. We note that ker ? = 8(T ′),

so the requirement that ? induces an equivalence T /ker ? ' T ′′ is satisfied, hence ?' is fully
faithful.

(3) It suffices to check that the essential image of ?' is 8(T ′)⊥. Let I � 8(I0) ∈ 8(T ′). For
any H � ?'(H0) ∈ ?'(T ′′), we then have

T (G, H) � T (8(I0), ?'(H0)) � T ′′(?8(I0), H0) � 0

since 8(T ′) = ker ?. We deduce that ?'(T ′′) ⊆ 8(T ′)⊥. Conversely, let G � 8(G0) ∈ 8(T ′)⊥, and
consider the unit � : 1⇒ ?'?. Taking the cone of �G

G
�G→ (?'?)G → G′→ Σ(?'?)G,

we note that by (2), ?' is fully faithful, so ?� : ? ⇒ ??'? is a natural isomorphism, and
hence ?(G′′) � 0. Therefore, G′ ∈ 8(T ′). Now, both G and ?'?G are in 8(T ′)⊥, which is a full
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triangulated subcategory of T and is thus closed under cones; in particular, G′ ∈ 8(T ′) ∩
8(T ′)⊥ ' {0}, so G′ � 0. We conclude that �G : G � ?'?G. �

9.5 Splittings of exact sequences

Lemma 9.12. Consider a fully faithful triangulated functor 8 : T ′ ↩→ T and assume that 8 has a
right adjoint 8'. Then

8(T ′)⊥ = {G ∈ T | 8'(G) � 0} = ker 8' .

Proof. If G ∈ T , then for all I � 8(I0) ∈ 8(T ′), we have

T (I, G) � T (8(I0), G) � T ′(I0 , 8'(G)).

Thus, if G ∈ 8(T ′)⊥, we see that T ′(−, 8'(G)) � 0, so G ∈ ker 8'. Conversely, if G ∈ ker 8', then
the above right Hom-set is zero, hence the above left is too. �

Lemma 9.13. Consider a fully faithful triangulated functor 8 : T ′ → T and assume that for all
G ∈ T , there is a distinguished triangle

G′→ G → G′′→ ΣG′

where G′ ∈ 8(T ′) and G′′ ∈ 8(T ′)⊥. Then ⊥(8(T ′)⊥) = thick(8(T ′)).

Proof. Let G ∈ ⊥(8(T ′)⊥). We have a distinguished triangle

G′→ G → G′′→ ΣG′

by assumption, and by definition of G, we have T (G, G′′) � 0. Shifting around, we thus have

Σ−1G′′→ G′→ G
0→ G′′

which by Corollary 7.24 implies that G′ � Σ−1G′′ ⊕ G. In particular, G is a direct summand of
G′ ∈ 8(T ′), so G ∈ thick(8(T ′)). This shows ⊥(8(T ′)⊥) ⊆ thick(8(T ′)).

We already know that 8(T ′) ⊆ ⊥(8(T ′)⊥), and since ⊥(8(T ′)⊥) is thick, this means that
thick(8(T ′)) ⊆ ⊥(8(T ′)⊥). �

Theorem 9.14. Consider an exact sequence

T ′ 8−→ T
?
−→ T ′′.

Then the following statements are equivalent.

(1) The sequence is a localization sequence.

(2) The functor 8 has a right adjoint 8'.

(3) The functor ? has a right adjoint ?'.

(4) For all G ∈ T , there are G′ ∈ 8(T ′), G′′ ∈ 8(T ′)⊥ sitting in a distinguished triangle

G′→ G → G′′→ ΣG′.

Furthermore, in the above situation, we have an equivalence of triangulated categories and equality

T /(8(T ′)⊥) ∼−→ T ′, ⊥(8(T ′)⊥) = 8(T ′).
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Proof. Clearly, if (2) through (4) are equivalent, then (1) is equivalent to them all. We have
already seen in Proposition 9.3 that (4) implies (2). We will show that (2) ⇒ (4) ⇒ (3) ⇒ (2).
(2) ⇒ (4). Let � : 88' ⇒ 1 be the counit. By taking the cone, we then have a distinguished

triangle
8(8'G) → G → G′′→ Σ8(8'G)

for all G ∈ T . Since 8 is fully faithful, 8'� : 8' 88' ⇒ 8' is a natural isomorphism, so applying
8' to the above (and noting that adjoints of triangulated functors are triangulated), we have
the distinguished triangle

(8' 88')G
∼−→ 8'G → 8'G

′′→ Σ(8' 88')G

so that 8'G′′ � 0. By Lemma 9.12, we see that G′′ ∈ 8(T ′)⊥.
(4) ⇒ (3). Applying the dual of Proposition 9.3, we see that the inclusion 8′ : 8(T ′)⊥ ↩→ T

admits a left adjoint !. Since ! has fully faithful right adjoint 8′, it induces an equivalence
� : T /ker ! ' 8(T ′)⊥ by Corollary 9.9. Now, by the dual of Lemma 9.12, we have ker ! =
⊥(8(T ′)⊥), and since 8(T ′) is thick, Lemma 9.13 tells us that ker ! = 8(T ′). Therefore, we
get an equivalence T ′′ ' 8(T ′)⊥ which we abusively also call �. The following computation
shows that 8′� is right adjoint to ?:

T ′′(?−,−) � 8(T )⊥(�?−, �−) = 8(T )⊥(!−, �−) � T (−, 8′�−).

(3) ⇒ (2). Let ? have a right adjoint ?'. By taking the cocone of the components of the
unit � : 1⇒ ?'?, we have distinguished triangles

G′→ G → ?'?(G) → ΣG′

By Theorem 9.11, ?' is fully faithful, hence ?� : ? ⇒ ??'? is a natural isomorphism. There-
fore, applying ? above yields that G′ ∈ ker ? = 8(T ′). Furthermore, one trivially sees that
?'(T ′′) ⊆ 8(T ′)⊥, so we may apply Proposition 9.3.

For the final statements, note that we already showed that (4) implies the equality

8(T ′) = ⊥(8(T ′)⊥)

in Lemma 9.13; for the equivalence, since 8 is fully faithful, by Corollary 9.9 the right adjoint
8' induces an equivalence T /ker 8' ' T ′. Since ker 8' = 8(T ′)⊥, we are done. �

Remark 9.15. Observe that, in fact, the implications (2) ⇔ (4) ⇒ (3) hold without assuming
that the essential image of T ′ in T is thick. Indeed, the only step where thickness appears
there is in (4) ⇒ (3), showing that ker ! = 8(T ′); without thickness, however, one has ker ! =

thick(8(T ′)). However, we know that T /N ' T /thick(N ), so this actually does not matter.
The other implications, however, strictly make use of thickness in an essential way, and

so may not be naturally generalized.

9.6 Recollements

Recall that an exact sequence of triangulated categories is a recollement if it both a localization
sequence and a colocalization sequence, i.e. if all adjoints exist. In other words, a recollement
looks like this:

T ′ T T ′′.8 ?

8'

8!

?'

?!

` `

` `
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The results we have produced (and their duals) tell us that having a recollement is the
same as having distinguished triangles

?!?(G) → G → 88!(G) → Σ?!?(G),
88'(G) → G → ?'?(G) → Σ88'(G),

telling us about the adjoints. Of course, the above make use of the adjoints, so really we
should say

G′→ G → G′′→ ΣG′, G′ ∈ ⊥(8(T ′)), G′′ ∈ 8(T ′),
G′→ G → G′′→ ΣG′, G′ ∈ 8(T ′), G′′ ∈ 8(T ′)⊥.

Perhaps surprisingly, these things do appear in nature, and one may see them as providing a
way to distinguish between open and closed sets. In particular, for any topological space -, let
D(-) denote the derived category of sheaves of Abelian groups on -, and consider a closed
set / ⊆ -. Write * := -\/, and let 8 : / ↩→ -, respectively 9 : * ↩→ -, be the inclusions.
Then there is a recollement of the form

D(/) D(-) D(*).8∗ 9∗

8!

8∗

9∗

9!

` `

` `

In the above, we have suppressed explicitly writing how the functors are derived, as it is not
important in the context of merely presenting this as an example. The important point is that
this kind of situation arises whenever one considers the complement of a closed subspace,
even in geometric situations such as for schemes. More generally, one can go backwards and
use this to “identify” which kinds of objects should be considered open versus closed, by
placing them within an appropriate recollement.

In a recollement

T ′ T T ′′8 ?

8'

8!

?'

?!

` `

` `

the functor 8' ◦ ?! is sometimes referred to as the gluing functor. This can be made sense of
using the above example of sheaves: the functor 9! is given by “extending by zero” while 8!
considers those sections with support in /.

9.7 Appendix: Verdier quotients of stable∞-categories as cofibers

The appropriate∞-categorical version of triangulated categories is given by stable∞-categories.
A natural question is thus to ask in what form the Verdier quotient construction appears in
the theory of stable∞-categories. There is one evident approach: do the same thing aswe did
for triangulated categories. That is, given a stable ∞-category D, we consider a stable sub-
category C ↩→ D, and form a class of morphsisms S(C) := {( 5 : G → H) ∈ D | cofib 5 ∈ C}.
Then the Verdier quotient should be the localizationD[S(C)−1].

On the other hand, there is a different approach, and one which is a sense more ele-
gant. The theory of colimits of stable ∞-categories is very well-behaved, particularly if the
∞-categories in question are presentable. This leads to the

Definition 9.16. Let � : C → D be a fully faithful exact functor of presentable stable ∞-
categories. Then the Verdier quotientD/C is the cofiber of �. That is, it is the pushout
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C D

∗ D/C

�

in the∞-category of presentable stable∞-categories.

This is a rather beautiful and simple definition, capturing precisely our intuition for what
exact sequences are. One can show that, in various settings, this agrees with the previ-
ously suggested definition as a localization; this is done in [BGT13] and [Dre15]. Similarly,
they show that the concept agrees with that on triangulated categories: it is proven that
ho(D/C) ' ho(D)/ho(C).
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10 Abstract cohomology through t-structures

An important topic of homological algebra is (co)homology. Indeed, the entire subject is
named after it. Typically, cohomology is handled (one way or another) through derived
categories, by using that the cohomology functors on chain complexes descend to cohomol-
ogy functors on the derived category. One can then study various properties in a nice and
systematic way. However, there is also an abstract formulation of cohomology on the level
of triangulated categories, given by the theory of t-structures. These were initially invented
in [BBDG18], where they acted as a way to find Abelian categories living inside triangulated
categories (in particular, Abelian categories of so-called perverse sheaves).

While the formalism of t-structures should really be motivated by seeing the concrete
example of derived categories, we choose to reverse this and instead view t-structures as a
formal setting in which cohomology arises, later showing that this may be employed in the
standard cases. As a result, some of the axioms may at first seem a bit unmotivated, but the
hope is that they are still convincing enough to be considered reasonable. We essentially
follow [KS94].

10.1 Truncation functors & t-structures

In essence, the cohomology functors on chain complexes come about due to the natural grad-
ing that chain complexes have: indeed, given a chain complex G• ∈ C(A), we can consider
the piece G 8 living in degree 8. Cohomology comes out of the relation between this piece and
its neighbouring pieces. Accordingly, t-structures start with the perspective that this should
be doable in more generality by specifying this grading as data.

Definition 10.1. Let T be a triangulated category. A t-structure on T is a pair (T ≤0 , T ≥0)
of replete full subcategories of T (the aisle and co-aisle, respectively; alternatively, the cocon-
nective piece and the connective piece) satisfying the below conditions. For any = ∈ ℤ, we set
T ≤= := Σ−=T ≤0 and T ≥= := Σ−=T ≥0.

(T1) (T ≤0)⊥ ⊇ T ≥1. That is, if G ∈ T ≤0 and H ∈ T ≥1, then T (G, H) = 0.

(T2) T ≤−1 ⊆ T ≤0 and T ≥1 ⊆ T ≥0.

(T3) For all G ∈ T , there is a distinguished triangle

G′→ G → G′′→ ΣG′

such that G′ ∈ T ≤0 and G′′ ∈ T ≥1.

Remark 10.2. Requiring the subcategories in a t-structure to be replete is not strictly necessary
for all purposes, but it is a nice simplifying assumption, and furthermore, it is harmless to
reduce to this case since one can always just enlarge one’s subcategories to be replete.

Example 10.3. Let T be a triangulated category. There are two trivial t-structures one may
put on T , namely (T , 0) and (0, T ).

Example 10.4. Whenwe get around to the derived category in later lectures, we will see that
for an Abelian categoryA, the pair

(D≤0(A),D≥0(A))

given by the subcategories spanned by those complexes concentrated in non-positive or
non-negative cohomological degrees determines a t-structure. This is called the standard t-
structure on D(A).
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Exercise 27. Let (T ≤0 , T ≥0) be a t-structure. Show that, for all = ∈ ℤ, the pair (T ≤= , T ≥=) is
a t-structure.

We may employ the results developed in Lecture 9 immediately. In particular, we can
make use of Proposition 9.3 (and its dual); inspection of the assumptions reveal that one
demands almost exactly half the conditions of a t-structure. We deduce that the inclusions

�≤= : T ≤= ↩→ T , �≥= : T ≥= ↩→ T

admit a right (resp. left) adjoint.

Definition 10.5. Let (T ≤0 , T ≥0) be a t-structure on T . The right adjoint of �≤= , respectively
the left adjoint of �≥= , are denoted

�≤= : T → T ≤= , resp. �≥= : T → T ≥=

and are called the truncation functors.

By construction, the counit � of the adjunction �≤= ` �≤= and the unit � of the adjunction
�≥=+1 ` �≥=+1 lie in distinguished triangles

�≤=G
�G−→ G

�G−→ �≥=+1G −→ Σ�≤=G.

Furthermore, any other distinguished triangle

G′→ G → G′′→ ΣG′,

such that G′ ∈ T ≤= and G′′ ∈ T ≥=+1, is canonically isomorphic to the first one. The details of
this are in Proposition 9.3.

Proposition 10.6. For all = ∈ ℤ and G ∈ T , there is a unique morphism 3=G : �≥=+1G → Σ�≤=G
such that

�≤=G
�G−→ G

�G−→ �≥=+1G
3=G−→ Σ�≤=G

is a distinguished triangle. Moreover, the morphisms 3=G assemble into a natural transformation 3= :
�≥=+1 ⇒ Σ�≤= .

Proof. We use Lemma 7.22. All we have to do is check that

T (Σ�≤=G, �≥=+1G) = 0

but Σ�≤=G ∈ ΣT ≤= = T ≤=−1 ⊆ T ≤= , and (T ≤=)⊥ ⊇ T ≥=+1, so this is clear.
To see that the (now unique) morphisms 3=G assemble into a natural transformation 3= :

�≥=+1 ⇒ Σ◦�≤= , supposewe have amap 5 : G → H. Applying �≤= to 5 and using adjointness,
we get a morphism of distinguished triangles

�≤=G G �≥=+1G Σ�≤=G

�≤=H H �≥=+1H Σ�≤=H

�≤= 5 5

3=G

Σ�≤= 5
3=H

which by uniqueness (see Lemma 7.19) implies that the dashed arrow is �≥=+1 5 . �

Exercise 28. Prove that for all = ∈ ℤ,

�≤= = Σ−= ◦ �≤0 ◦ Σ= , �≥= = Σ−= ◦ �≤0 ◦ Σ= .
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10.2 Properties of the aisle and co-aisle

The truncation functors can be used to detect if something is in the aisle or the co-aisle.

Proposition 10.7. Let (T ≤0 , T ≥0) be a t-structure. Then G ∈ D≤= if and only if �≥=+1G � 0.

Proof. Since �≤= is right adjoint to a fully faithful functor, we have that G ∈ D≤= if and only if
then the counit component �≤=G → G is an isomorphism. This, in turn, is equivalent to the
cone (which is given by �≥=+1G) being zero. �

Exercise 29. Let (T ≤0 , T ≥0) be a t-structure. Show that 0 ∈ T ≤0 ∩ T ≥0.

Corollary 10.8. Let (T ≤0 , T ≥0) be a t-structure. Then the following statements hold.

(1) H ∈ T ≥1 if and only if T (G, H) = 0 for all G ∈ T ≤0.

(2) G ∈ T ≤0 if and only if T (G, H) = 0 for all H ∈ T ≥1.

In particular, T ≥1 = (T ≥0)⊥ and T ≤0 =
⊥(T ≥1). Furthermore, T ≤0 and T ≥0 are closed under

direct summands.

Proof. We prove (1), since (2) follows dually. Since T ≥1 ⊆ (T ≥0)⊥, one direction is clear. For
the other, let H ∈ T and assume that T (G, H) = 0 for all G ∈ T ≥0. We now note that

0 � T (G, 0) � T (G, H) � T (G, �≤0H)

so that �≤0H � 0, hence H ∈ T ≥1.
To see that T ≤0 is closed under direct summands, let G � G′ ⊕ G′′ ∈ T ≤0. Then for all

H ∈ T ≥1 we have

0 � T (G, H) � T (G′, H) ⊕ T (G′′, H) =⇒ T (G′, H) � T (G′′, H) � 0

so that G′, G′′ ∈ T ≤0 by (2). The other case is dual. �

We thus see that the aisle and co-aisle in a t-structure are almost thick subcategories,
missing only the property of being closed under a particular shift. We can say more: these
subcategories are also closed under extensions. To prove this, we need a lemma.

Lemma 10.9. Let (T ≤0 , T ≥0) be a t-structure, and let G ∈ T . If T (G, �≥1G) = 0, then G ∈ T ≤0.

Proof. By assumption, we have a distinguished triangle

�≤0G → G
0→ �≥1G → Σ�≤0G.

We recognize that any distinguished triangle involving a zero map induces a direct sum
decomposition by Corollary 7.24, and in particular, we see that

�≤0G � Σ−1�≥1G ⊕ G.

Since T ≤0 is closed under direct summands, we see that G ∈ T ≤0. �

Proposition 10.10. Let (T ≤0 , T ≥0) be a t-structure. Then T ≤0 and T ≥0 are closed under exten-
sions.

Proof. We prove the first statement, as the other follows by duality. Consider a distinguished
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triangle
G′→ G → G′′→ ΣG′

where G′, G′′ ∈ T ≤0. We want to show that G ∈ T ≤0. We apply the cohomological functor
T (−, �≥1G) to see that

0 = T (G′′, �≥1G) → T (G, �≥1G) → T (G′, �≥1G) = 0

is exact, so T (G, �≥1G) = 0. By the preceeding lemma, we conclude that G ∈ T ≤0. �

Exercise 30. Let (T ≤0 , T ≥0) be a t-structure, and let 5 : G → H be a morphism in T . Fix
some = ∈ ℤ. Prove the following statements.

(1) If G, H ∈ T ≤= , then any cone of 5 is in T ≤= and any cocone of 5 is in T ≤=+1.

(2) If G, H ∈ T ≥= , then any cone of 5 is in T ≥=−1 and any cocone of 5 is in T ≥= .

10.3 The Abelian heart of a t-structure

One of the original motivations for t-structures is the following construction.

Definition 10.11. Let (T ≤0 , T ≥0) be a t-structure. The heart of T with respect to (T ≤0 , T ≥0)
is

T ♥ := T ≤0 ∩ T ≥0.

The heart consists of objects “concentrated in degree zero” and so, from the example of
the derived category, we expect this to be an Abelian category. Proving that is our next aim.
An easy step towards this is showing that T ♥ is additive.

Proposition 10.12. Let (T ≤0 , T ≥0) be a t-structure. Then T ♥ is additive.

Proof. By Exercise 29, 0 ∈ T ♥. Furthermore, it is clearly pre-additive, since it is a full subcat-
egory of a pre-additive category. Therefore, we need only show it admits finite direct sums.
However, if G, G′ ∈ T ≤0 then for all H ∈ T ≥1, we have

0 � T (G ⊕ G′, H) � T (G, H) ⊕ T (G′, H)

so G ⊕ G′ ∈ T ≤0 by Corollary 10.8. The same statement holds for T ≥0 by a similar argument.
Therefore, T ♥ is also closed under finite direct sums. �

To prove that T ♥ is Abelian, we will make use of the uniqueness properties coming from
the orthogonality assumptions in a t-structure, alongwith the intuition that cones in triangu-
lated categories are like “homotopy cokernels”. Actually, the cone is a more subtle construc-
tion: the cocone, which should be a “homotopy kernel”, is just a shift of the cone. In other
words, the cone contains both information about the kernel and cokernel of a morphism.
One way in which this appears in other results is that it suffices to know a morphism has
trivial cone to know that it is an isomorphism, in contrast to an Abelian category where one
needs to check both the kernel and cokernel.

Theorem 10.13. Let (T ≤0 , T ≥0) be a t-structure. Then T ♥ is an Abelian category.

Proof. Since we already know T ♥ is additive, what remains is to check that it admits kernels
and cokernels, and that the image coincides with the coimage. Let 5 : G → H be a morphism
in T ♥, and take the cone to get a distinguished triangle

G
5
→ H → I → ΣG.
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Inspecting the triangle and using closure under extension, one sees that I ∈ T ≤0 ∩ T ≥−1.

(1) The kernel of 5 is given by �≤0Σ−1I → G. To see this, let F ∈ T ♥. Applying T (F,−),
we see that we have an exact sequence

0 = T (F,Σ−1H) → T (F,Σ−1I) → T (F, G)
5∗→ T (F, H).

Therefore, we see that T (F,Σ−1I) is the kernel of 5∗ : T (F, G) → T (F, H). Using the
canonical isomorphism T (F,Σ−1I) � T (F, �≤0Σ−1I), we are done.

(2) The cokernel of 5 is given by H → �≥0I. This is identical to (1).

(3) The image and coimage agree. By (1) and (2), we obtain the image of 5 by truncating the
cocone of the composition H → I → �≥0I. Let us consider the distinguished triangle

4 → H → �≥0I → Σ4 ,

so that im 5 = �≥04. We observe that 4 ∈ T ≤1∩T ≥0. Applying (TR4) to the composition
H → I → �≥0I, we obtain a distinguished triangle

ΣG → Σ4 → Σ�≤−1I → Σ2G { G → 4 → �≤−1I → ΣG.

By closure under extension, we see that 4 ∈ T ≤0, so in fact 4 ∈ T ♥. Shifting to the left,
we have the distinguished triangle

Σ−1�≤−1I → G → 4 → �≤−1I

where we note that Σ−1�≤−1I = �≤0Σ−1I = ker 5 , so really we have

ker 5 → G → 4 → Σ(ker 5 ).

Since 4 � �≥04, this exhibits 4 also as the cokernel of the kernel map, i.e. 4 � coim 5 .
On the other hand, 4 � im 5 , so we are done.

We conclude that T ♥ is Abelian. �

Remarkably, thismeans thatwheneverwehave a t-structure on T , wemayfind anAbelian
subcategory where the kernel and cokernel are, in a sense, given by the triangulated struc-
ture on T .

10.4 Cohomology functors

By truncating to the left and right at position =, we are left with something in T ≤= ∩ T ≥= '
Σ−=T ♥. This indudces the all-important cohomology functors intrinsic to any t-structure.

Definition 10.14. Let (T ≤0 , T ≥0) be a t-structure. The zeroth cohomology functor with respect
to the t-structure is

H0 : T → T ♥ , H0 := �≥0 ◦ �≤0.

More generally, we define the =th cohomology functor, for any = ∈ ℤ, by

H= : T → T ♥ , H= := H0 ◦Σ= .

Exercise 31. Show that H= = Σ= ◦ �≥= ◦ �≤= .
Now, wemade a choice in the above definition of what order to do the truncations. How-

ever, clearly there should be no difference between truncating on the left then the right, or
vice versa. We verify this now, in (3) below.
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Proposition 10.15. Let (T ≤0 , T ≥0) be a t-structure. Then the following statements hold.

(1) If < ≤ =, then

�≤= ◦ �≤< � �≤< ◦ �≤= � �≤< , and �≥= ◦ �≥< � �≥< ◦ �≥= � �≥= .

(2) If < > =, then
�≥< ◦ �≤= � 0 � �≤= ◦ �≥< .

(3) For all <, = ∈ ℤ, there is a unique natural isomorphism � : �≥< ◦ �≤= � �≤= ◦ �≥< such that
the diagram of natural transformations

�≤= 1 �≥<

�≥<�≤= �≤=�≥<

�

��≤=

�

∼
�

��≥<

commutes, where � is the counit of �≤= ` �≤= and � is the unit of �≥< ` �≥< .

Proof. (1) We prove the leftmost statement, as the other one is dual. Observe that we have a
natural transformation ��≤< : �≤= ◦ �≤< ⇒ �≤< . Since T ≥= is a reflective subcategory and
�≤<G ∈ T ≤< ⊆ T ≤= for all G ∈ T , we see that this natural transformation must be a natural
isomorphism by Lemma 4.8, showing that �≤= ◦�≤< � �≤< . For the other isomorphism, note
that we have natural isomorphisms

T ≤<(−, (�≤< ◦ �≤=)(−)) � T ≤=(�≤<(−), �≤=(−)) � T (�≤<(−),−)

so by uniqueness of adjoints, we get a natural isomorphism �≤< ◦ �≤= � �≤< .
(2) The natural transformation �≤<−1�≤= ⇒ �≤= is a natural isomorphism since = < <, by

(1). In particular, the cone of each component is zero. However, the cone here is canonically
given by �≥< ◦ �≤= , hence we get one of the claimed isomorphisms. The other is dual.

(3) By (2), the claim already holds when < > =. Hence, we may assume that < ≤ =. We
have the distinguished triangles

�≤<−1�≤=G −→ �≤=G
(��≤=)G−→ �≥<�≤=G −→ Σ�≤<−1�≤=G,

�≤=�≥<G
(��≥<)G−→ �≥<G −→ �≥=+1�≥<G −→ Σ�≤=�≥<G.

Applying Exercise 30, we see that �≤=�≥<G, �≥<�≤=G ∈ T ≤= ∩T ≥< . Now we use the univer-
sal properties of the truncations (being adjoints):

�≤=G �≥<�≤=G

G

�≥<G �≤=�≥<G

(��≤=)G

�G

∃!�G

(��≥<)G

{

�≤=G �≥<�≤=G

G

�≥<G �≤=�≥<G

(��≤=)G

�G

∃!
�G

(��≥<)G

where we use that �≥<�≤=G ∈ T ≤= . We see that there is a unique natural transformation
� : �≥< ◦ �≤= ⇒ �≤=�≥< making the provided diagram of natural transformations commute.
We must now show it is an isomorphism.
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By part (1), we may rewrite the triangles as

�≤<−1G −→ �≤=G
(��≤=)G−→ �≥<�≤=G −→ Σ�≤<−1G,

�≤=�≥<G
(��≥<)G−→ �≥<G −→ �≥=+1G −→ Σ�≤=�≥<G.

We apply (TR4) to the composition �≤<−1G → �≤=G → G. This yields a distinguished triangle

�≥<�≤=G → �≥<G → �≥=+1G → Σ�≥<�≤=G.

However, we now have a distinguished triangle around �≥<G whose left term is in T ≤= and
right term is in T ≥=+1, which implies (by construction of the truncation adjunction) that the
canonical map �G : �≥<�≤=G → �≤=�≥<G is an isomorphism. �

Corollary 10.16. Let (T ≤0 , T ≥0) be a t-structure, and consider a morphism 5 : G → H in T ♥.
Given a distinguished triangle

G → H → I → ΣG,

we have canonical isomorphisms

ker 5 � H−1(I), and coker 5 � H0(I).

Proof. Recall from the proof of Theorem 10.13 that we have canonical isomorphisms

ker 5 � �≤−1I, and coker 5 � �≥0I

and that I ∈ T ≥−1 ∩ T ≤0. In particular, we have canonical isomorphisms

�≥−1I � I � �≤0I.

Thus,
ker 5 � �≤−1�≥−1I � H−1(I), and coker 5 � �≥0�≤0I � H0(I)

where, for the left computation, we use Proposition 10.15. �

Corollary 10.17. Let (T ≤0 , T ≥0) be a t-structure, and consider a short exact sequence

0→ G ↩→ H � I → 0

in T ♥. Then there is a unique morphism I → ΣG for which

G → H → I → ΣG

is a distinguished triangle in T .

Proof. If such a morphism exists, it is unique by Lemma 7.22, since there are no non-zero
maps from T ≤−1 to T ≥0. To see that one exists, pick a distinguished triangle

G → H → I′→ ΣG.

We aim to show that I′ � I. We have that I′ ∈ T ≤0 ∩ T ≥−1, and therefore the distinguished
triangle

�≤−1I′→ I′→ �≥0I′→ Σ�≤−1I′

turns into
H−1(I′) → I′→ H0(I′) → ΣH−1(I′).
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However, by Corollary 10.16, we have

H−1(I′) � ker(G ↩→ H) � 0, H0(I′) � im(H � I) � I.

Thus, I′ � H0(I′) � I. �

10.5 Appendix: Cohomology is cohomological

Of central importance about the cohomology functors induced by a t-structure is the fact that
they are actually genuine cohomological functors, so that a t-structure gives rise to some new
non-trivial and interesting constructions. We now prove this.

Exercise 32. LetA be an Abelian category, and let 5 : G → H be a morphism inA. Suppose
that we have a factorization

5 = (G
6
→ I

ℎ
↩→ H).

Show that there is a canonical isomorphism ker 5 � ker 6.

Exercise 33. Let (T ≤0 , T ≥0) be a t-structure, and let G ∈ T ≤= . Show that H8(G) � 0 for all
8 > =. Prove the dual statement also.

Theorem 10.18. Let (T ≤0 , T ≥0) be a t-structure. Then the cohomology functors H= : T → T ♥ are
cohomological.

Proof. Note that T ♥ is Abelian by Theorem 10.13, so the proposition is a valid one to consider.
The functors are clearly additive, so we must check that they send distinguished triangles to
exact sequences. Consider a distinguished triangle

G → H → I → ΣG

in T . It suffices to show that H0 sends this to an exact sequence

H0(G) → H0(H) → H0(I).

The proof proceeds in three steps, increasing in generality.

(1) The case when G, H, I ∈ T ≤0. We show that, in fact,

H0(G) → H0(H) → H0(I) → 0

is exact. Todo this, note that for allF ∈ T ♥ and D ∈ T ≤0, we have natural isomorphisms

T ♥(H0(D), F) = T (�≥0�≤0D, F) � T (�≥0D, F) � T (D, F)

since �≤0D
∼−→ D. Furthermore, T (ΣD, F) � 0 since ΣD ∈ T ≤−1. Therefore, applying

T (−, F) to our original distinguished triangle yields exact sequences

T (ΣG, F) T (I, F) T (H, F) T (G, F)

0 T (H0(I), F) T (H0(H), F) T (H0(G), F)

∼ ∼ ∼ ∼

for all F ∈ T ♥, from which we deduce that the claimed sequence is exact.

(2) The case when G ∈ T ≤0. We again show that

H0(G) → H0(H) → H0(I) → 0
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is exact, by reduction to (1). Let F ∈ T ≥1. We see that T (G, F) � T (ΣG, F) � 0. In
particular, applying T (−, F) to our distinguished triangle yields an exact sequence

0→ T (I, F) → T (H, F) → 0

so that we have a natural isomorphism T (I, F) ∼−→ T (H, F) when F ∈ T ≥1. Therefore,
we have natural isomorphisms

T (�≥1I, F) � T (I, F) ∼−→ T (H, F) � T (�≥1H, F)

from which we conclude that �≥1H
∼−→ �≥1I. To finally reduce to (1), we apply (TR4) to

the composition H → I → �≥1I, yielding a distinguished triangle

ΣG → Σ�≤0H → Σ�≤0I → Σ2G { G → �≤0H → �≤0I → ΣG

wherewe are now in the situation of (1). We have a natural isomorphism H0 � H0 ◦�≤0,
so in the end, applying H0 to the above yields the desired exact sequence.

(3) The case when G, H, I are all arbitrary. Consider the composition �≤0G → G → H, and
take the cone so we have a distinguished triangle

�≤0G → H → 4 → Σ�≤0G.

Applying (TR4) to the composition, we have the commutative diagram

�≤0G G �≥1G Σ�≤0G

�≤0G H 4 Σ�≤0G

G H I ΣG

�≥1G 4 I Σ�≥1G

with rows distinguished triangles. Applying H0 to the second row, by (2), gives the
exact sequence

H0(G) → H0(H) → H0(4).
By the dual of (2), shifting the bottom row and applying H0 yields the exact sequence

0→ H0(4) → H0(I) → H1(G)

and in particular, H0(4) → H0(I) is a monomorphism. Noting that H0(H) → H0(I)
factors as H0(H) → H0(4) ↩→ H0(I) by the commutativity of the big diagram, we deduce
by Exercise 32 that

im(H0(G) → H0(H)) � ker(H0(H) → H0(4)) � ker(H0(H) → H0(I))

showing that
H0(G) → H0(H) → H0(I)

is exact.

This completes the proof. �
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Corollary 10.19. Let (T ≤0 , T ≥0) be a t-structure, and suppose we have a distinguished triangle

G → H → I → ΣG, G, H, I ∈ T ♥.

Then the sequence
0→ G → H → I → 0

is exact. In particular, there is a bijection between exact sequences in T ♥ and distinguished triangles
whose terms lie in T ♥.

Proof. We have a natural isomorphism H0 |T ♥ � 1T ♥ , since on objects of the heart, the com-
ponents of the (co)unit for the truncation at zero are isomorphisms. In particular, Theorem
10.18 specializes to say that given a distinguished triangle

G → H → I → ΣG, G, H, I ∈ T ♥ ,

applying H0 yields exact sequences

0 H0(G) H0(H) H0(H) 0

0 G H I 0

∼ ∼ ∼
as desired. The final assertion follows by combining the above with Corollary 10.17. �

10.6 Appendix: Bounded and non-degenerate t-structures

Consider a complex G• in some Abelian category categoryA:
G• : · · · → G 8−1 → G 8 → G 8+1 → · · · .

The t-structure on D(A) is such that G• ∈ D(A)≤0 if and only if G• ∈ D≤0(A), i.e. if H8(G•) � 0
for all 8 > 0. In other words, one can use the cohomology functors to completely characterize
the aisle (and co-aisle) of the t-structure.

Now consider some arbitrary triangulated category T with a t-structure (T ≤0 , T ≥0). The
above statement no longer holds, as, in fact, theremay be non-zero G ∈ T for which H8(G) � 0
for all 8 ∈ ℤ. Indeed, consider the trivial t-structure (T , 0). The left truncation functor does
nothing, while the right truncation functor is the functor sending everything to zero. In this
t-structure, all cohomology functors are just the zero functor T → 0, and so in fact every
object G ∈ T forms a counter-example. We would like to find critera which prevent this kind
of pathology.

Proposition 10.20. Let (T ≤0 , T ≥0) be a t-structure, and let G ∈ T . Assume one of the following
conditions hold.

(i) There is some = ∈ ℤ such that G ∈ T ≤= .

(ii) If �≥1G ∈ T ≥= for all = ≥ 1, then �≥1G � 0.

Then G ∈ T ≤0 if and only if H8(G) � 0 for all 8 > 0.

Proof. If G ∈ T ≤0, then H8(G) � 0 for all 8 > 0; this is Exercise 33. For the converse, we split
into the cases presented.

(i) We proceed by induction. If = ≤ 0, we are done. Thus, suppose = > 0, and that we
know the result for all 0 ≤ < < =. By assumption, H=(G) � 0, so the distinguished
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triangle
�≤=−1�≤=G → �≤=G → �≥=�≤=G → Σ�≤=−1�≤=G

becomes
�≤=−1G → G → 0→ Σ�≤=−1G

showing that �≤−1G
∼−→ G. In particular, G ∈ T ≤=−1, so by the induction hypothesis

G ∈ T ≤0.

(ii) Wewish to show that �≤0G → G is an isomorphism, to which it suffices to prove �≥1G �
0. To this end, let us show that for all = ≥ 1, the morphism �≥=G → �≥=+1G is an
isomorphism. Consider the distinguished triangle

�≤=�≥=G → �≥=G → �≥=+1�≥=G → Σ�≤=�≥=G

which we compute as

Σ−= H=(G) → �≥=G → �≥=+1G → Σ−=+1 H=(G).

Since = > 0, we see that H=(G) � 0 and therefore �≥=G
∼−→ �≥=+1G. We see that �≥1G �

�≥=G for all = ≥ 1, so that �≥1G ∈ ⋂
=≥1 T ≥= . By assumption, �≥1G is such that if it

satisfies this, it is zero.

This completes the proof. �

This proposition hopefully motivates the following definitions being interesting.

Definition 10.21. Let (T ≤0 , T ≥0) be a t-structure. We say it is left bounded, resp. right
bounded, if

T =

⋃
=∈ℤ
T ≥= , resp. T =

⋃
=∈ℤ
T ≤= .

If the t-structure is both left and right bounded, we say is is bounded.
We say the t-structure is left non-degenerate, resp. right non-degenerate if

{0} '
⋂
=∈ℤ
T ≤= , resp. {0} '

⋂
=∈ℤ
T ≥= .

If the t-structure is both left and right non-degenerate, we say it is non-degenerate.

Proposition 10.22. Let (T ≤0 , T ≥0) be a t-structure. If it is right bounded, then it is right non-
degenerate.

Proof. Suppose that G ∈ ⋂
:∈ℤ T ≥: . Since the t-structure is right bounded, we also have that

G ∈ T ≤= for some = ∈ ℤ. In particular, G ∈ T ≤= ∩ T ≥=+1, so

G � �≥=+1�≤=G � 0

by Proposition 10.15. Therefore, the t-structure is non-degenerate. �

Corollary 10.23. Let (T ≤0 , T ≥0) be a right non-degenerate t-structure. Then

T ≤0 = {G ∈ T | ∀8 > 0, H8(G) � 0}.

Proof. Clearly, we have
T ≤0 ⊆ {G ∈ T | ∀8 > 0, H8(G) � 0}.
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For the converse, we apply Proposition 10.20. In applying (ii), note that since T ≥< ⊆ T ≥=
for all < ≥ =, we have ⋂

=∈ℤ
T ≥= =

⋂
=≥1
T ≥= .

By assumption, the right term is thus zero, which means (ii) in the proposition is satisfied
for all G ∈ T . �

By appropriately dualizing what we have proven, we see that in a non-degenerate t-
structure (for example, one which is bounded) the aisle and co-aisle are completely deter-
mined by the cohomology functors H= : T → T ♥. In this case, the cohomology functors act
nicely as a family.

Proposition 10.24. Let (T ≤0 , T ≥0) be a non-degenerate t-structure. Then {H=}=∈ℤ is a conservative
family of functors. That is, a morphsism 5 : G → H is an isomorphism if and only if the morphisms
H=( 5 ) : H=(G) → H=(H) are isomorphisms for all = ∈ ℤ.

Proof. One direction is easy: if 5 is already an isomorphism, the latter statement is clear.
Conversely, assume H=( 5 ) is an isomorphism for all = ∈ ℤ. Taking the cone of 5 , we have a
distinguished triangle

G
5
→ H → I → ΣG.

From Theorem 10.18, the functors H= are cohomological, so we have the exact sequence

H=(G) H=(H) H=(I) H=+1(G) H=+1(H)∼
H=( 5 )

∼
H=+1( 5 )

which implies that H=(I) � 0 for all = ∈ ℤ. In particular, since the t-structure is right non-
degenerate, Corollary 10.23 tells us that

I ∈
⋂
=∈ℤ
T ≤= .

However, since the t-structure is also left non-degenerate, this means that I � 0, so 5 is an
isomorphism. �

In fact, this property completely characterizes non-degenerate t-structures.

Theorem 10.25. Let (T ≤0 , T ≥0) be a t-structure. Then the following are equivalent.

(1) The t-structure is non-degenerate.

(2) The family of cohomological functors {H= : T → T ♥}=∈ℤ is conservative.

Proof. The implication (1) ⇒ (2) has already been proven. For the converse, let us first as-
sume that

G ∈
⋂
=∈ℤ
T ≤= .

Then H=(G) � 0 for all = ∈ ℤ by Exercise 33. In particular, G → 0 is an isomorphism, by
conservativity. This shows that the t-structure is left non-degenerate. Showing that it is right
non-degenerate is dual. �

Remark 10.26. The above characterization of non-degenerate t-structures suggests that per-
haps one ought to be able to go the other way: starting from a cohomological functor
� : T → A such that the family {� ◦ Σ=}=∈ℤ is conservative, construct a t-structure on
T such that T ♥ ' A and the cohomology functors are given by � ◦ Σ= .
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In general, one cannot hope for this to be possible, but for particular kinds of functors
it actually is. A prominent example is the theorem of Hoshino–Kato–Miyachi [HKM02],
previously discussed briefly in Appendix 4.5, which proves that this works for the functor
T (B,−) : T →ModEnd(B) as long as B ∈ T is a compact generator and satisfies

∀8 > 0, T (B, B[8]) � 0.

Proving the theorem takes some work, but involves many interesting ingredients which we
will cover later.

10.7 Appendix: Stable t-structures

Let T be a triangulated category. The trivial t-structure (T , 0) has a special property.

Definition 10.27. A t-structure (T ≤0 , T ≥0) is called stable if ΣT ≤0 = T ≤0.

We dedicate this short appendix to a simple characterization of such t-structures, which
also demonstrates that they are somewhat pathological. Everything is taken from [CLZ22],
where a little more can be found too.

Proposition 10.28. Let (T ≤0 , T ≥0) be a t-structure. The following statements are equivalent.

(1) The t-structure (T ≤0 , T ≥0) is stable.

(2) Both T ≤0 and T ≥0 are triangulated subcategories of T .

(3) The heart of the t-structure (T ≤0 , T ≥0) satisfies T ♥ ' {0}.

Proof. That (1) and (2) are equivalent is pretty easy. In particular, (2) trivially implies (1),
while to see that (1) implies (2), use that by definition of being stable, T ≤0 = T ≤−1 is a
triangulated subcategory and that T ≥0 = (T ≤−1)⊥.

To see that (1)⇒ (3), we compute

T ♥ = T ≤0 ∩ T ≥0 = T ≤−1T ≥0 = T ≤−1 ∩ (T ≤−1)⊥ ' {0}.

For the converse implication (3) ⇒ (1), it suffices to prove that for all G ∈ T ≤0, we have
�≤−1G

∼−→ G. To this end, consider the distinguished triangle

�≤−1G → G → �≥0G → Σ�≤−1G.

Since G ∈ T ≤0, we have �≥0G � H0(G) � 0 since T ♥ ' {0}, and therefore the map on the left
is an isomorphism. �

10.8 Appendix: t-structures on stable∞-categories (TBD)
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11 Gluing t-structures

In Lecture 9, we framed recollements of triangulated categories as exhibiting how a triangu-
lated category is glued together from two smaller pieces. The sense in which this could be
considered true was only somewhat hinted at, as in reality it is largely speaking a heuristic,
but in this lecture we will see a concrete way this rears its head in practice.

The theory of t-structures (covered in Lecture 10) was introduced originally in [BBDG18],
which in fact also introduced the theory of recollements. The concrete application they had
in mind was the construction of a particular Abelian category of perverse sheaves, obtained by
gluing t-structures in a recollement. The theory required to do this is what we cover in this
lecture.

11.1 t-Exactness

A triangulated functor between triangulated categories is sometimes referred to as an exact
functor. We’ve avoided the usage of this term, as it may present confusion, but the intu-
ition comes from the fact that it preserves “homotopy exact sequences” (i.e. distinguished
triangles). However, there are other exactness phenomena that arise naturally, such as some
functors preserving complexes living in particular degrees. The theory of t-structures pro-
vides a convenient setting in which to phrase these properties more generally.

Definition 11.1. Let � : T1 → T2 be a triangulated functor of triangulated categories with
t-structures (T ≤0

8
, T ≥0)8 , 8 = 1, 2.

(1) We say � is left t-exact if �(T ≥0
1 ) ⊆ T ≥0

2 .

(2) We say � is right t-exact if �(T ≤0
1 ) ⊆ T ≤0

2 .

(3) We say � is t-exact if it is both left t-exact and right t-exact.

Lemma 11.2. Let � : T1 → T2 be a triangulated functor of triangulated categories with t-structures
(T ≤0
8

, T ≥0
8
), 8 = 1, 2.

(1) If � is left t-exact, then for all = ∈ ℤ we have �(T ≥=1 ) ⊆ T ≥=2 .

(2) If � is right t-exact, then for all = ∈ ℤ we have �(T ≤=1 ) ⊆ T ≤=2 .

Proof. Statements (1) and (2) are dual, so it suffices to prove (1). We have T ≥=
8

= Σ−=T ≥0
8

,
and since � is triangulated, we thus have

�(T ≥=1 ) = �(Σ−=T ≥0
1 ) = Σ−=�(T ≥0

1 ) ⊆ Σ−=T ≥0
2 = T ≥=2

as desired. �

Remark 11.3. The property of being, say, right t-exact can be pictured (and thus related intu-
itively to ordinary exactness of functors) in terms of the following:

�(· · · → • → • → 0→ 0→ · · · ) = · · · → • → • → 0→ 0→ · · · .

In contexts where a t-structure is present, it is often of central interest, and whether a functor
is t-exact or not can have significant impact. For example, you may have an equivalence
T ' T ′ of triangulated categories, but if both have “natural” t-structures on them and the
equivalence does not preserve them, then that could present difficulties if one is relying on
e.g. “boundedness” assumptions in one’s work.
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11.2 t-Compatible exact sequences

The notion of a functor being t-exact describes a way in which it is compatible with some
specified t-structures. Naturally, in the presence of an exact sequence, this leads us to the
following definition.

Definition 11.4. We say an exact sequence

T1
8→ T

?
→ T2

of triangulated categories with t-structures is t-compatible if 8 and ? are t-exact.

Proposition 11.5. Consider a t-compatible exact sequence

T1
8→ T

?
→ T2

of triangulated categories with t-structures. Then

8(T ≤0
1 ) = T ≤0 ∩ 8(T1), T ≤0

2 = ?(T ≤0),
8(T ≥0

1 ) = T ≥0 ∩ 8(T1), T ≥0
2 = ?(T ≥0).

Proof. It suffices to show the equalities on one row, as the other is dual. We begin with the
equality on the left. It is clear that 8(T ≤0

1 ) ⊆ T ≤0 ∩ 8(T1) since 8 is t-exact. Conversely, let
G ∈ T ≤0 ∩ 8(T1), and write G � 8(G1). We show that �≥0G1 � 0. To this end, consider the
distinguished triangle

�≤0G1 → G1 → �≥1G1 → Σ�≤0G1.

By t-exactness, we have 8(�≤0G1) ∈ T ≤0 and 8(�≥1G1) ∈ T ≥1. Since 8 is a triangulated functor,
we thus see that the induced triangle

8(�≤0G1) → G → 8(�≥1G1) → Σ8(�≤0G1)

has left term in T ≤0 and right term in T ≥1. By uniqueness, we see that 8(�≥1G1) � �≥1G, but
since G ∈ T ≤0, we thus have 8(�≥1G1) � 0. Therefore, �≥1G1 � 0 on account of 8 being fully
faithful.

We must now show that ?(T ≤0) = T ≤0
2 . By t-exactness, it is clear that ?(T ≤0) ⊆ T ≤0

2 , so
let us prove the converse inclusion. Pick G2 ∈ T ≤0

2 . Since ? is essentially surjective, write
G2 � ?(G) for some G ∈ T . Consider the distinguished triangle

�≤0G → G → �≥1G → Σ�≤0G.

Applying ?, we get
?(�≤0G) → G2 → ?(�≥1G) → Σ?(�≤0G).

where the left term is in T ≤0
2 and the right term is in T ≥1

2 , hence, similarly as before, ?(�≥1G) �
�≥1G2 � 0. Finally, we just note that this implies ?(�≤0G) � G2, so we are done. �

Remark 11.6. Oberve that we also prove that 8 ◦ �≤0 � �≤0 ◦ 8 and ? ◦ �≤0 ◦ �≤0 ◦ ?, along with
the dual versions.

The proposition says that in a t-compatible exact sequence, the t-structures on the left and
right terms are completely determined by the functors 8 and ?, along with the t-structure on
the middle term. The converse is also true.
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Proposition 11.7. Consider a t-compatible exact sequence

T1
8→ T

?
→ T2

of triangulated categories with t-structures. Then

T ≤0 = {G ∈ ⊥8(T ≥1
1 ) | ?(G) ∈ T ≤0},

T ≥0 = {G ∈ 8(T ≤−1
1 )⊥ | ?(G) ∈ T ≥0}.

To prove this, we need a preparatory lemma.

Lemma 11.8. Consider a t-compatible exact sequence

T1
8→ T

?
→ T2

of triangulated categories with t-structures, and let H ∈ T . Then ?(H) ∈ T ≤0
2 if and only if �≥1H ∈

8(T ≥1
1 ).

Proof. We consider the distinguished triangle

�≤0H → H → �≥1H → Σ�≤0H

which we note, by the same arguments as before, is sent by ? to

�≤0?(H) → ?(H) → �≥1?(H) → Σ�≤0?(H).

Now we see that

?(H) ∈ T ≤0
2 ⇐⇒ �≥1?(H) � 0 ⇐⇒ �≥1H ∈ ker ? = 8(T1).

Since �≥1H ∈ T ≥1 and T ≥1 ∩ 8(T1) = 8(T ≥1
1 ), we are done. �

Proof of Proposition 11.7. We prove the first equality, since the second is dual.
Let G ∈ T ≤0. Since 8(T ≥1

1 ) ⊆ T ≥0, we see that

∀H1 ∈ T ≥1
1 , T (G, 8(H1)) � 0

so that G ∈ ⊥8(T ≥1
1 ). That ?(G) ∈ T ≤0

2 follows by t-exactness. This shows the ⊆ inclusion.
Conversely, suppose that G ∈ ⊥8(T ≥1

1 ) and ?(G) ∈ T ≤0
2 . Applying Lemma 11.8, we see

that �≥1G ∈ 8(T ≥1
1 ), and therefore

T (G, �≥1G) � 0

by the orthogonality assumption. Therefore, Lemma 10.9 says that G ∈ T ≤0 as desired. �

Corollary 11.9. Consider an exact sequence

T1 → T → T2

where T1 and T2 have t-structures on them. Then there is at most one t-structure on T for which the
sequence is t-compatible.
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11.3 Gluing in a t-compatible recollement

To collect what we have proven: in a t-compatible exact sequence

T1 → T → T2 ,

the t-structures on the left/right terms uniquely determine the one in the middle, and vice
versa. The question we now ask is: what if we drop the t-structure on T ?

More precisely, the problem is as follows. Suppose we have t-structures on the T8 , 8 = 1, 2.
Is it possible to find a t-structure on T such that the exact sequence becomes t-compatible? A
priori, there is no good answer to this, other than “in general, no.” Of course, we know that if
one exists, it is unique and given by an explicit formula by Proposition 11.7. The trouble is in
showing that this formula actually produces a t-structure. The point of this final part of the
lecture is that the situation is considerably differentwhen the exact sequence is a recollement.
Throughout, let us fix a recollement

T1 T T28 ?

8'

8!

?'

?!
` `

` `
where T1 and T2 have t-structures on them. Our goal is the following.

Theorem 11.10. Define the full subcategories

T ≤0 := {G ∈ T | 8!(G) ∈ T ≤0
1 , ?(G) ∈ T ≤0

2 },
T ≥0 := {G ∈ T | 8'(G) ∈ T ≥0

1 , ?(G) ∈ T ≥0
2 }.

Then (T ≤0 , T ≥0) is a t-structure on T , and is the unique t-structure making the above sequence
t-compatible.

Lemma 11.11. With the notation from Theorem 11.10, we have

?!(T ≤0
2 ) ⊆ T ≤0 , ?'(T ≥0

2 ) ⊆ T ≥0

and
8(T ≤0

1 ) ⊆ T ≤0 , 8(T ≥0
1 ) ⊆ T ≥0.

Proof. We focus on the incluions on the left, as the others are dual; we prove the bottom one
and leave the top as an exercise. If G1 ∈ T ≤0

1 , then 8(G1) satisfies

8!8(G1) � G1 ∈ T ≤0
1 , and ?(G1) � 0 ∈ T ≤0

2 .

Therefore, 8(G1) ∈ T ≤0, so 8(T ≤0
1 ) ⊆ T ≤0. �

Exercise 34. Prove the rest of Lemma 11.11.
With the lemma in place, we can prove the gluing theorem.

Proof of Theorem 11.10. Let us begin by proving (T2). Let G ∈ T ≤0. We must show that
ΣG ∈ T ≤0. However,

8!(ΣG) � Σ8!(G) ∈ T ≤−1
1 ⊆ T ≤0

1

and
?(ΣG) � Σ?(G) ∈ T ≤−1

2 ⊆ T ≤0
2 .

Therefore, ΣT ≤0 ⊆ T ≤0. Showing that Σ−1T ≥0 ⊆ T ≥0 is similar.
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We now prove (T1). Let G ∈ T ≤0 and H ∈ T ≥0. By the remarks of Section 9.6, we have a
distinguished triangle

?!?(G) → G → 88!(G) → Σ?!?(G).
Applying T (−,Σ−1H) and using adjointness, we get the exact sequences

T (88!(G),Σ−1H) T (G,Σ−1H) T (?!?(G),Σ−1H)

T (8!(G),Σ−18'(H)) T (G,Σ−1H) T (?(G),Σ−1?(H))
∼ ∼

at which point we observe that the left and right terms of the bottom row are zero since
8'(H) ∈ T ≥0

1 and ?(H) ∈ T ≥0
2 . Therefore, T (G,Σ−1H) � 0 as desired.

What remains now is (T3), which is the trickiest and most sophisticated part. Let G ∈ T .
Wemust find a distinguished triangle sandwiching G between an object of T ≤0 and an object
of Σ−1T ≥0. Let us attempt an approximation first: project down to T2 using ?, extract a
distinguished triangle there, then apply ?' to get a distinguished triangle

?'�
≤0?(G) → ?'?(G) → ?'�

≥1?(G) → Σ?'�
≤0?(G).

We now take the cocone of the composition G → ?'?(G) → ?'�≥1?(G) to get a distinguished
triangle

G′→ G → ?'�
≥1?(G) → ΣG′.

This is almost what we want, as Lemma 11.11 suggests, but we don’t really have control over
the left term and can’t say much about it. So, let’s do basically the same trick to get a map
G′→ 8�≥18!(G′), and take the cocone to get a distinguished triangle

0 → G′→ 8�≥18!(G′) → Σ0.

Finally, lets take the cone of the composition 0 → G′→ G to get a distinguished triangle

0 → G → 1 → Σ0.

With these steps done, we may now present the crux of the argument.
Applying (TR4) to the composition 0 → G′→ G yields a distinguished triangle

8�≥18!(G′) → 1 → ?'�
≥1?(G) → Σ8�≥18!(G′).

Hitting this with ? yields
0→ ?(1) ∼−→ �≥1?(G) → 0.

Hitting it with 8', on the other hand, yields

�≥18!(G′)
∼−→ 8'(1) → 0→ Σ�≥18!(G′).

We conclude that 1 ∈ T ≥1. It remains to see that 0 ∈ T ≤0. To show this, apply 8! to the
triangle defining 0, to get

8!(0) → 8!(G′) → �≥18!(G′) → Σ8!(0).

By uniqueness of cocones (up to non-canonical isomorphism), this implies that 8!(0) �
�≤08!(G′) ∈ T ≤0

1 . Finally, applying ? to the triangle defining 1, and using that ?(1) � �≥1?(G),
yields

?(0) → ?(G) → �≥1?(G) → Σ?(0)
which implies that ?(0) � �≤0?(G) ∈ T ≤0

2 . Therefore, 0 ∈ T ≤0 and we are done. �
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Example 11.12. Here is a simple application of Theorem 11.10. Consider any old recollement

T ′ T T ′′8 ?

8'

8!

?'

?!

` `

` `

Recall that we may put certain trivial t-structures on T ′ and T ′′. For any triangulated cate-
goryD, let us write

C1(D) := (D , 0), C2(D) := (0,D).
Gluing C1(T ′) and C1(T ′′), or C2(T ′) and C2(T ′′), does nothing interesting: we just get C1(T )
or C2(T ). On the other hand, gluing C1(T ′)with C2(T ′′), we get the t-structure

T ≤0
1,2 = {G ∈ T | 8!(G) ∈ T ′, ?(G) = 0}

= ker ? = 8(T ′),
T ≥0

1,2 = {G ∈ T | 8'(G) = 0, ?(G) ∈ T ′′}
= ker 8' = 8(T ′)⊥.

In other words, we get the t-structure (8(T ′), 8(T ′)⊥) on T . In light of our results on t-
structures, in particular Corollary 10.8, this yields another proof that ⊥(8(T ′)⊥) = 8(T ′)when
one is in a recollement situation. Explicitly, one applies the corollary and uses the fact that
Σ−18(T ′)⊥ = 8(T ′)⊥.

Example 11.13. If we have a recollement

T1 T T28 ?

8'

8!

?'

?!

` `

` `

with t-structures on T1 and T2, thenwe can observe that for all = ∈ ℤ, (T ≤=
8

, T ≥=
8
) also defines

a t-structure on T8 . As a result, for any pair of integers (=1 , =2) ∈ ℤ × ℤ, we can produce a
t-structure

T ≤0
=1 ,=2 = {G ∈ T | 8!(G) ∈ T ≤=1

1 , ?(G) ∈ T ≤=2
2 },

T ≥0
=1 ,=2 = {G ∈ T | 8'(G) ∈ T ≥=1

1 , ?(G) ∈ T ≥=2
2 }.
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12 Ind-categories & compactness

Recall that, in topology, there is the notion of a compact topological space. This is, by definition,
a topological space - such that any open cover has a finite subcover. In other words, it is a
space whose topology is in some sense “finitary,” and the space itself is not too big. More
precisely, we can always understand some potentially infinite collection of data on- in terms
of a finite subset.

Inspired by the topological notion of compactness, we may produce a categorical notion
of compact objects which is similar in terms of intuition.

12.1 Compact objects

Construction 12.1. Let C be a locally small category, let � be an infinite regular cardinal, let
� be a �-filtered category, and suppose C admits �-shaped colimits. For a diagram � : � → C ,
we consider the colimit cone

� ⇒ lim←−�

and note, for G ∈ C , that applying C(G,−) yields a cone

C(G, �) ⇒ C(G, lim←−�)

which induces a canonical morphism

lim←−C(G, �) → C(G, lim←−�)

which, for clarity, we also write as

lim←−
8∈�
C(G, �(8)) → C(G, lim←−

8∈�
�(8)).

Definition 12.2. Let C be a locally small category, let � be an infinite regular cardinal, and let
G ∈ C . We say G is �-compact if, for any diagram� : � → C where � is �-filtered, the canonical
map

lim←−
8∈�
C(G, �(8)) → C(G, lim←−

8∈�
�(8))

is an isomorphism. We say G is compact if it is ℵ0-compact (i.e. $-compact).
We denote by C� the full subcategory of C spanned by the �-compact objects.

Remark 12.3. One can rephrase �-compactness as follows: G ∈ C is �-compact if for any �-
filtered diagram � : � → C and morphism

G → lim−→
8∈�

�(8)

there is some 8′ ∈ � such that the above morphism factors uniquely as

G lim−→8∈�
�(8)

�(8′)

where the morphism �(8′) → lim−→8∈�
�(8) is the canonical morphism induced by universal

property. Note the similarity to the concept of compactness in additive categories explored in
Appendix 4.5.
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Example 12.4. The �-compact objects in Set are precisely the �-small sets. Indeed, let � be
some set, and assume it is �-compact. Let S� be the poset of �-small subsets of �. Note that

lim−→
�′∈S�

�′ =
⋃
�′∈S�

�′ = �.

This is just the statement that every set is the union of its �-small subsets. Now, since � is
�-compact, we get a factorization through some �-small set �′

� �

�′
? 8

and in particular, 8 ◦ ? = id�. The map 8, as indicated, is injective, but because it factors the
identity, it must also be surjective, hence a bijection. That is, we get 8 : �′

∼−→ �, so � is �-
small. For the converse, by Proposition 12.8(1) below the �-compact objects are closed under
�-small colimits, e.g. disjoint unions of < � points.

Example 12.5. The compact objects in Top are the finite discrete spaces. This is a bit harder
to show, but we sketch the argument. First of all, if - ∈ Top is compact, then - is finite: if -′
is the topological space with underlying set - equipped with the indiscrete topology, then
one may check that -′ is the colimit of its finite subsets (with the indiscrete topology). Thus,
the same trick as in Set shows that - is finite.

To see that - is discrete, one constructs a sequence of spaces .= with underlying set
ℤ≥= × {0, 1} and topology given by the sets *=,< = ℤ≥< × {0} ∪ ℤ≥= × {1}, for < ≥ =.
These have canonical maps .= → .=+1, and one checks that .∞ = lim−→=

.= is given by the set
{0, 1}with the indiscrete topology, the canonical map.= → .∞ being the projection onto the
second component. For any (!) subset* ⊆ -, onemay then consider the trivially continuous
map 1* : - → .∞ and factor it through some .= by compactness; projecting onto the first
component, one can take an appropriate inverse image to see that* is open.

Exercise 35. Consider an adjunctionD C .
!

'

a

(1) Assume that C ,D admit �-filtered colimits, and ' commutes with �-filtered colimits.
Show that ! preserves �-compact objects, i.e. that it restricts to a functor C� →D�.

(2) Let ¥ be a field. Show that the forgetful functor * : Vect¥ → Set preserves filtered
colimits. Deduce using (1) that finite-dimensional vector spaces over ¥ are compact.

(3) Show that, in fact, the compact objects in Vect¥ are exactly the finite-dimensional
spaces.

We now turn to trying to characterize the compact objects in certain nice classes of cat-
egories. To do this, we will need to investigate a closure property that the category C� of
�-compact objects in a category C satisfies.

Definition 12.6. Let C be a category. An object G ∈ C is a retract of H ∈ C if there is a diagram

G H G.

idG

We say that a full subcategory C ′ ⊆ C is closed under retracts if, whenever H ∈ C ′ and G is a
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retract of H, we have G ∈ C ′.

Lemma 12.7. Let C be a category, and consider the category Mor(C) of morphisms in C , i.e. the
functor category Fun([1],C). Then the full subcategory of Mor(C) spanned by the isomorphisms is
closed under retracts.

Proof. The claim is that in a diagram

G G′ G

H H′ H

0

5

idG

6

1

5

0′

idH

1′

wherein themiddle vertical arrow 6 is an isomorphism, all vertical arrows are isomorphisms.
We claim that the inverse of 5 is given by 1 ◦ 6−1 ◦ 0′. To see this, we compute

5 ◦ 1 ◦ 6−1 ◦ 0′ = 1′ ◦ 0′ = idH

and
1 ◦ 6−1 ◦ 0′ ◦ 5 = 1 ◦ 0 = idG

as desired. �

Proposition 12.8. Let C be a locally small category. Recall that Now, let � be an infinite regular
cardinal, and suppose that C admits �-filtered colimits. Then

(1) C� is closed under �-small colimits in C .

(2) C� is closed under retracts, i.e. if 2′ ∈ C is �-compact and 2 ∈ C is a retract of 2′, then 2 is
�-compact.

Proof. (1) Suppose we have a �-filtered diagram � : � → C and a �-small diagram � → C�.
Then, by the definition of �-compactness and Theorem 12.35, we have

lim−→
8∈�
C(lim−→

9∈�
�(9), �(8)) � lim−→

8∈�
lim←−
9∈�
C(�(9), �(8))

� lim←−
9∈�

lim−→
8∈�
C(�(9), �(8))

� lim←−
9∈�
C(�(9), lim−→

8∈�
�(8)) � C(lim−→

9∈�
�(9), lim−→

8∈�
�(8))

as desired.
(2) Let � : � → C be a �-filtered diagram, let H be �-compact, and let G be a retract of H.

This data then induces a retraction

lim−→8∈�
C(G, �(8)) lim−→8∈�

C(H, �(8)) lim−→8∈�
C(G, �(8))

C(G, lim−→8∈�
�(8)) C(H, lim−→8∈�

�(8)) C(G, lim−→8∈�
�(8))

∼

and thus, by Lemma 12.7, we are done. �
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Remark 12.9. Though the notion of compactness in this lecture may seem irreconcilably dif-
ferent from the one in Appendix 4.5, the one here actually implies the one there. The reason
for this is the following trick: one can write small coproducts as filtered colimits of finite
coproducts. In particular, let � be some set, and consider a collection of objects {H8}8∈� in
an additive category C admitting filtered colimits indexed by �. Then one can consider the
(obviously filtered) poset % given by all finite subsets of �, and the induced diagram % → C
given by

(� ⊆ �) ↦→
⊕
9∈�

H 9 .

Taking the colimit of this diagram, one can fairly easily check that

∐
8∈�

H8 = lim−→
�⊆�

� finite

©«
⊕
9∈�

H 9
ª®¬ .

In particular, if G ∈ C is compact in the sense described in this lecture, then we get

G
∐

8∈� H8

⊕
9∈� H 9 lim−→�⊆�

(⊕
9∈� H 9

)
so G is also compact in the sense given in Appendix 4.5.

12.2 Ind-categories

To give examples of �-compact objects, we will provide a construction which associates to
any category C a category Ind�(C)which contains C as a full subcategory (up to equivalence)
and in which every object of C becomes �-compact. It is based on taking C and formally
cocompleting it with respect to �-filtered colimits. The construction is also of independent
interest, as it plays a role in numerous techniques of category theory. For example, the Freyd–
Mitchell embedding theorem (that any Abelian category may be embedded into a module
category) makes use of the embedding C ↩→ Ind(C) (or, in actuality, a small adjustment of
it), at which point one applies the result in Appendix 4.5.

Definition 12.10. Let C be a locally small category, and let � be an infinite regular cardinal.
We define the category

Ind�(C) ⊆ Fun(Cop , Set)
as the full subcategory of Fun(Cop , Set) spanned by functors isomorphic to a �-filtered small
colimit of representable functors.

Remark 12.11. Observe that, since the point-category [0] is �-filtered for all �, every repre-
sentable functor is an object of Ind�(C). In particular, the Yoneda embedding factors as

C ↩→ Ind�(C) ⊆ Fun(Cop , Set).

In this way, we may identify C with a full subcategory of Ind�(C).
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Lemma 12.12. Let C be a locally small category, and let � be an infinite regular cardinal. Then
Ind�(C) admits small �-filtered colimits, and the canonical inclusion

Ind�(C) ↩→ Fun(Cop , Set)

preserves with them.

We defer a proof of this lemma for a later lecture, as it combines a few foundational
categorical ingredients that we have not yet introduced, and which are not the focus of our
attention at the moment.

Proposition 12.13. Let C be a locally small category, and let � be an infinite regular cardinal. Then
an object � ∈ Ind�(C) is �-compact if and only if it is a retract of a representable functor. That is,
Ind�(C)� is the smallest full subcategory of Ind�(C) which contains all representable functors and
which is closed under retracts.

Proof. We begin by showing that for G ∈ C , the functor ℎG ∈ Ind�(C) is �-compact. This
follows simply by the fact that colimits in functor categories are computed point-wise. First,
note that the inclusion Ind�(C) ⊆ Fun(Cop , Set) preserves �-filtered colimits. Thus, we may
compute

PSh(C)(ℎG , lim−→
8

�(8)) � (lim−→
8

�(8))(G) = lim−→
8

�(8)(G) � lim−→
8

PSh(C)(ℎG , �(8))

as desired. It now follows from Proposition 12.8 that the retract of any representable functor
is �-compact.

Conversely, wemust show that any �-compact� ∈ Ind�(C) is the retract of a representable
functor. By definition,

� � lim−→
8∈�

ℎG8

but, on the other hand, the compactness of � thus means that we may find some 9 ∈ � and a
factorization

� �

ℎG 9

so that � is a retract of ℎG 9 . �

12.3 Idempotent completeness

The above result establishes that the embeddingC ↩→ Ind�(C) factors through the �-compact
objects

C ↩→ Ind�(C)� ⊆ Ind�(C).
An interesting question to ask is under what circumstances this induces an equivalence be-
tween C and Ind�(C)�. Since we know that the latter is the “closure” of C with respect to
retracts in Ind�(C), in order for this equivalence to hold, we must know that the retract of
a representable is a representable. In order to find conditions enabling this, we will pass
through a slightly different concept which is closely related to retracts: idempotents.

Definition 12.14. Let C be a category. An endomorphism 4 : G → G in C is an idempotent if

42 = 4.
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Example 12.15. Let C be a category, and consider a retraction

H
0→ G

1→ H.

Then the morphism 4 := 0 ◦ 1 : 2 → 2 is an idempotent. In particular,

42 = 4 ◦ 4 = (0 ◦ 1) ◦ (0 ◦ 1) = 0 ◦ idH ◦ 1 = 4.

Definition 12.16. We say that an idempotent 4 : G → G in a category C splits into a retraction
if there is a retraction

H
0→ G

1→ H

such that 4 = 0 ◦ 1.

Lemma 12.17. Let C be a category, and let 4 : G → G be an idempotent in C . Suppose that 4 splits
into a retraction in two ways:

H
0→ G

1→ H,

H′
0′→ G

1′→ H′.

Then the morphisms 1′ ◦ 0 : H → H′ and 1 ◦ 0′ : H′ → H are inverse to each other, and we have an
isomorphism of retractions

H G H

H′ G H′

0

∼1′◦0

1

∼1′◦0
0′ 1′

In particular, H � H′. In other words, splittings of idempotents into retractions are unique.

Proof. Thefirst assertion is just a computation: since, by assumption, wehave 4 = 0◦1 = 0′◦1′,
we may write

1′ ◦ 0 ◦ 1 ◦ 0′ = 1′ ◦ 4 ◦ 0′ = 1′ ◦ 0′ ◦ 1′ ◦ 0′ = idH′ .

The other composition is similar (indeed, just swap the roles of the morphisms). That the
diagram commutes is verified in an essentially identical manner. �

What we are looking for is a condition which ensures that the retract of a representable
functor is representable. As it turns out, the above uniqueness in splitting an idempotent
into a retraction means that the splitting condition itself can be exploited for precisely this
purpose:

Lemma 12.18. Let C be a locally small category, and let � : Cop → Set be a functor. Suppose that
� is the retract of a representable functor

�
0→ ℎG

1→ �.

If the idempotent 4 : G → G given by applying the Yoneda lemma to

0 ◦ 1 : ℎG → ℎG

splits into a retraction, then � is representable.
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Proof. If the idempotent 4 : G → G splits into a retraction

H
8→ G

?
→ H,

then we get a second splitting of 0 ◦ 1 into a retraction

ℎH → ℎG → ℎH

which by the uniqueness in Lemma 12.17 means that � � ℎH . �

Clearly, in some generic category, not all idempotents split into retractions. However,
there are conditions which ensure that a given idempotent does (in fact, which completely
characterize this). We will need to know one of them in order to justify a definition.

Proposition 12.19. Let C be a category, and let 4 : G → G be an idempotent in C . Then the following
are equivalent:

(i) The idempotent 4 splits into a retraction.

(ii) The equalizer

eq(4 , idG) G G
4

id2

exists.

(iii) The coequalizer

G G coeq(4 , idG)
4

idG

exists.

Proof. The only case we will care about is (ii)⇒ (i).
Suppose we are given the existence of the equalizer. Then, since 42 = 4 = 4 ◦ id, we get an

induced morphism

G

eq(4 , idG) G G.

4

?

8 4

idG

The desired retraction is now

eq(4 , idG) G eq(4 , idG).8 ?

Indeed, by definition, we have ?◦ 8 = 4. Furthermore, by definition of the equalizer and since
8 is always a monomorphism, we have

8 ◦ (? ◦ 8) = 4 ◦ 8 = 8 =⇒ ? ◦ 8 = id

as desired. �

Exercise 36. Prove the rest of Proposition 12.19.
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Proposition 12.20. Let C be a locally small category, and let C denote the smallest full subcategory
of Fun(Cop , Set) which is closed under retracts and contains the representable functors. Then every
idempotent in C splits into a retraction, and the Yoneda embedding

C ↩→ C

is an equivalence if and only if every idempotent in C splits into a retraction.

Proof. That every idempotent in C splits into a retraction is clear since they split in
Fun(Cop , Set) by Proposition 12.19 and since the retract of a retract of a representable functor
is a retract of a representable functor. For the second statement: clearly, if the functor is an
equivalence, every idempotent in C splits; conversely, if every idempotent in C splits, then
given some retraction

�→ ℎG → �

we may apply Lemma 12.18 to see that � is representable. �

Definition 12.21. Let C be a category. We say C is idempotent complete if every idempotent in
C splits into a retraction. IfC is locally small, we callC the idempotent completion (alternatively,
the Cauchy completion) of C , so that C is idempotent complete if and only if it is equivalent
to its idempotent completion.

Together with the intuition from Lemma 12.18, Proposition 12.20 justifies the above def-
inition as reasonable. Furthermore, they make it clear that this is exactly the condition we
were looking for as a nice way of formulating when retracts of representables are repre-
sentable.

Proposition 12.22. Let C be a locally small category, and let � be an infinite regular cardinal. If C
is idempotent complete, then the embedding

C ↩→ Ind�(C)

induces an equivalence C ' Ind�(C)� between C and the �-compact objects of Ind�(C). In particular,
one obtains an equivalence

Ind�(C) ' Ind�(Ind�(C)�).

Proof. By Proposition 12.13, an object � of Ind�(C) is �-compact if and only if it is the retract
of a representable functor. Applying Lemma 12.18, we see that � is representable if and only
if � is �-compact. �

12.4 Appendix: Filtered colimits

Here we give a definition which, in a sense, captures the notion of taking “unions” in a
category.

Definition 12.23. Let � be a small infinite regular cardinal. We say a small category � is
�-filtered if any diagram � → � for which |Mor(�)| < � has a cocone, i.e. admits an extension

� �

�⊲

We say � is filtered if it is ℵ0-filtered. We say that a category C admits �-filtered colimits if every
diagram � → C where � is �-filtered has a colimit.
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Remark 12.24. When � = ℵ0, �-filteredness can be phrased as follows:

(a) � is non-empty.

(b) For all pairs of objects 8 , 9 ∈ �, there is an object : ∈ � and morphisms 8 → :, 9 → :, as
in the diagram

:

8 9

(c) For any two parallel morphisms 5 , 6 : 8 → 9, there is an object : ∈ � and a morphism
ℎ : 9 → : such that ℎ ◦ 5 = ℎ ◦ 6, as in the diagram

:

8 9
5

6

ℎ

To prove this, one must simply check that these conditions are enough to build the desired
extensions of any given finite diagram in �, and this is not so hard.

Example 12.25. Any category which has a final object is �-filtered for all �.

Example 12.26. Any category � which admits �-small colimits, i.e. colimits indexed by cate-
gories � with |Ob(�)| < �, is �-filtered.

Example 12.27. A partially ordered set (%,≤), when regarded as a category, is �-filtered
if and only if % is �-directed. A partially ordered set is �-directed if any collection {GB}B∈(
indexed by some set ( with |(| < � has an upper bound, i.e. there exists an element G∞ ∈ %
such that GB ≤ G∞ for all B ∈ (.

Example 12.28. Let � be an infinite regular cardinal. As special cases of Example 12.27, we
have:

(a) The partially ordered set {� | � < �} is �-filtered as a category.

(b) The partially ordered set {( ∈ 2� | |(| < �} is �-filtered as a category. In particular,
note that for any collection of �-small subsets of � indexed by a �-small set, taking the
union yields yet another �-small subset by the regularity of �.

(c) Let - be a topological space. Then the partially ordered set of open subsets of - is
�-filtered.

Example 12.29. Let � be an infinite regular cardinal, let ( be a set (as large as we want), and
let {�B}B∈S be an (-indexed collection of �-filtered categories. Then the product∏

B∈(
�B

is �-filtered.

Remark 12.30. Let �′ < � be two infinite regular cardinals. If � is �-filtered, then it is also
�′-filtered.
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Proposition 12.31. Consider a �-filtered category � and a diagram � : � → Set in the category of
small sets. We may then compute the colimit as

lim−→
8∈�

�(8) �
(∐
8∈�

�(8)
)
/∼

where ∼ is the equivalence relation given by (8 , 3) ∼ (8′, 3′) if and only if there is some : ∈ � and
5 : 8 → :, 6 : 8′→ : such that �( 5 )(3) = �(6)(3′).

Proof. First, a point of emphasis: it is non-trivial that the described relation is an equivalence
relation, and this is really the non-trivial part of the proof. Supposing it is, that this is the
colimit follows quite easily. Thus, we show that ∼ is an equivalence relation. Furthermore,
by Remark 12.30, it suffices to show this for � = ℵ0.

★ (Reflexivity) For all (8 , 3), we have (8 , 3) ∼ (8 , 3). This follows by noting that id8 : 8 → 8

does the job.

★ (Symmetry) Suppose that (8 , 3) ∼ (8′, 3′). Clearly (8′, 3′) ∼ (8 , 3) by swapping the roles
of the data showing the former.

★ (Transitivity) Suppose that (8 , 3) ∼ (8′, 3′) is exhibited by 5 : 8 → :, 6 : 8′ → :, and
(8′, 3′) ∼ (8′′, 3′′) is exhibited by 5 ′ : 8′→ :′, 6′ : 8′′→ :′. Extend the data using that � is
filtered:

:′′

: :′

8 8′ 8′′

ℎ ℎ′

5 6 5 ′ 6′

and note that

�(ℎ ◦ 5 )(3) = �(ℎ ◦ 6)(3′) = �(ℎ′ ◦ 5 ′)(3′) = �(ℎ′ ◦ 6′)(3′′)

so that (8 , 3) ∼ (8′′, 3′′) as desired.

This completes the proof. �

Remark 12.32. For an arbitrary colimit, the above argument fails, since the proof of transitivity
crucially relies on the diagram being filtered. However, one can still compute the colimit by
taking the equivalence relation generated by the given relation.

Construction 12.33. Let C , � and � be categories, and consider a diagram � : � × � → C .
From this, we can extract two other diagrams. In particular, there are isomorphisms

Fun(� ,Fun(� ,C)) � Fun(� × � ,C) � Fun(� ,Fun(� ,C))

from which we obtain diagrams

�′ : � → Fun(� ,C), �′′ : � → Fun(� ,C)

corresponding to �. Explicitly, �′ is given on objects by �′(9) = �(−, 9), and �′′ is given
by �′′(8) = �(8 ,−). Suppose C admits �-shaped limits and �-shaped colimits. We may then
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have functors
lim←− : Fun(� ,C) → C , lim−→ : Fun(� ,C) → C .

Consider the colimit of �′. We have

∀(9 → 9′) ∈ � ,
�′(9) lim−→�′

�′(9′)

{

lim←−�
′(9) lim←−(lim−→�′)

lim←−�
′(9′)

but also

lim←−�(−, 9) lim←−�
′(9) lim←−(lim−→�′)

lim−→�
lim←−� �(−, 9) lim−→(lim←−�

′′)

so we get a canonical map
lim−→(lim←−�

′′) → lim←−(lim−→�′).

Definition 12.34. We say that �-shaped limits and �-shaped colimits commute in C if for all
� : � × � → C , the canonical morphism

lim−→
9∈�

lim←−
8∈�

�(8 , 9) → lim←−
8∈�

lim−→
9∈�

�(8 , 9)

is an isomorphism.

The following is a fundamental result about �-filtered colimits in the category of sets,
and it is one of the major reasons that �-filtered colimits are useful.

Theorem 12.35. Let � be an infinite regular cardinal. Then �-filtered colimits commute with �-small
limits in Set. More precisely, let � be a �-small category, let � be a �-filtered category, and consider a
diagram � : � × � → Set. Then the canonical map

lim−→
9∈�

lim←−
8∈�

�(8 , 9) → lim←−
8∈�

lim−→
9∈�

�(8 , 9)

is an isomorphism (i.e. a bijection).

Proof. Fundamentally, this is just a computation. One computes the left and right sets, and
deduce from their explicit forms that they are isomorphic. First of all, for a fixed 9 ∈ �, we
can compute the limit as

lim←−
8∈�

�(8 , 9) �
{
(G8)8∈� ∈

∏
8∈�

�(8 , 9)
���� ∀(! : 8 → 8′) ∈ � , �(!, 9)(G8) = G8′

}
.

Now, as � is filtered, we can therefore compute the colimit as

lim−→
9∈�

lim←−
8∈�

�(8 , 9) � ©«
∐
9∈�

{
(G8)8∈� ∈

∏
8∈�

�(8 , 9)
���� ∀(! : 8 → 8′) ∈ � , �(!, 9)(G8) = G8′

}ª®¬ /∼
where ∼ identifies (G8)8∈� ∈ lim←−8∈� �(8 , 9) with (H8)8∈� ∈ lim←−8∈� �(8 , 9

′) if and only if there are
some

# : 9 → 9′′, #′ : 9′→ 9′′
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such that
∀8 ∈ � , �(8 ,#)(G8) = �(8 ,#′)(H8).

This computes one side. For the other side, again since � is filtered, for a fixed 8 ∈ � we may
compute the colimit as

lim−→
9∈�

�(8 , 9) � ©«
∐
9∈�

�(8 , 9)ª®¬ /'8
where the equivalence relation is defined by �(8 , 9) 3 G '8 H ∈ �(8 , 9′) if and only if there
is some ) : 9 → 9′′ and )′ : 9′ → 9′′ such that �(8 , ))(G) = �(8 , )′)(H). Now we can take the
limit to get

lim←−
8∈�

lim−→
9∈�

�(8 , 9) �
([98 , G8])8∈� ∈

∏
8∈�

©«
∐
9∈�

�(8 , 9)ª®¬ /'8
���� ∀(! : 8 → 8′), [98 , �(!, 98)(G8)] = [98′ , G8′]


where the canonical map can now be given by

 : lim−→
9∈�

lim←−
8∈�

�(8 , 9) → lim←−
8∈�

lim−→
9∈�

�(8 , 9), [9 , (G8)8∈�] ↦→ ([9 , G8])8∈� .

One may wish to sanity-check that this is well-defined (and this is not hard). Now it is just
a matter of checking that  is injective and surjective, which is where one critically uses the
assumption that � is �-small and � is �-filtered (thoughwe have already partly used the latter
in order to compute the colimit).

We construct an inverse � to . Hence, consider an element ([98 , G0
8
])8∈� ∈

lim←−8∈� lim−→9∈�
�(8 , 9). By the assumption that � is �-small and � is �-filtered, the elements 98 ∈ �,

8 ∈ � have a common join 9 ∈ � with morphisms )8 : 98 → 9. We set G8 = �(8 , )8)(G0
8
), so we

have
∀8 ∈ � , [98 , G0

8 ] = [9 , G8], i.e. G0
8 '8 G8 .

It follows that ([98 , G0
8
])8∈� = ([9 , G8])8∈� . We define � by

� : ([98 , G0
8 ])8∈� = ([9 , G8])8∈� ↦→ [9 , (G8)8∈�].

We need to show that this is well-defined. If we have ([9 , G8])8∈� = ([9′, H8])8∈� , then we find
#8 : 9 → 9′′0 , #

′
8
: 9′ → 9′′0 such that �(8 ,#8)(G8) = �(8 ,#′

8
)(H8). However, since � is �-filtered,

we may find a cone for the diagram given by the #8 , #′8 , which will provide a morphism
) : 9′′0 → 9′′ which equalizes all the #8 and all the #′

8
. We set # = ) ◦ #8 , #′ = ) ◦ #′

8
. Then

�(8 ,#)(G8) = �(8 ,#′)(H8) so that [9 , (G8)8∈�] = [9′, (H8)8∈�].
Now we need to ensure that the (G8)8∈� coming from � can be picked to actually form an

element of lim←−8∈� �(8 , 9). By assumption, we have that

∀(! : 8 → 8′), [9 , �(!, 9)(G8)] = [9 , G8′]
{ ∀(! : 8 → 8′), ∃()!

1 , )
!
2 : 9 → 9′), (�(8 , )!

1 ) ◦ �(!, 9))(G8) = �(8 , )!
2 )(G8′).

However, again, since � is �-small (hence has fewer than � arrows) and � is �-filtered, we
can take a cone for the diagram given by the )

!
:
to get a morphism # : 9′ → 9′′ for which

# ◦ )!
1 = # ◦ )!

2 for all !. Let ) = # ◦ )!
1 . We see that

([9 , G8])8∈� = ([9′′, �(8 , ))(G8)])8∈�
and

∀(! : 8 → 8′), (�(!, 9′′) ◦ �(8 , )))(G8) = (�(8 , )) ◦ �(!, 9′′))(G8) = �(8 , ))(G8′)
so that (�(8 , ))(G8))8∈� ∈ lim←−8∈� �(8 , 9). We conclude that � can be made into a well-defined
function, and it is quite clear that it is inverse to . �
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We can extend this slightly, using the results we’ve proven about reflective subcategories.

Definition 12.36. A Grothendieck topos is a Giraud subcategory of a presheaf category (with
values in Set).

Corollary 12.37. Let C be a Grothendieck topos. Then C admits all small limits and colimits, and
filtered colimits commute with finite limits in C .

Proof. Let � : C ↩→ PSh(C0) be the inclusion, with reflector � : PSh(C0) → C . From Theorem
12.35, we know that filtered colimits commute with finite limits in Set, and hence this is also
true in PSh(C0) since (co)limits are computed pointwise. By Theorem 4.10, all limits and
colimits that PSh(C0) admits, i.e. all small limits and colimits, are also admitted by C , and
the diagram

Fun(� ,C) C

Fun(� ,PSh(C0)) PSh(C0)

lim−→

�◦
lim−→

�

commutes (potentially up to natural isomorphism). By assumption, when � is filtered, all the
functors preserve finite limits, so we are done. �

Remark 12.38. Of course, if one can arrange for the reflector � to commute with larger limits,
then one can deduce that more filtered colimits commute with certain limits.

Remark 12.39. The definition of a Grothendieck topos given above is only one of many pos-
sible definitions. We have chosen the one that fits us best in this situation, but in general one
can characterize them

(1) in another concrete way, as sheaves on sites, or

(2) abstractly, as categories satisfying the Giraud axioms.

We may cover this more thoroughly in another lecture.
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13 More about Ind-categories & compact generation

This lecture has a few goals. Previously, we gave a sort of “extrinsic” definition of Ind-
categories, and relied upon Lemma 12.12 in our dealings with it without justification. We
want to justfy this lemma, and also provide a more “intrinsic” perspective on Ind-categories.
The first thing we want is a more canonical way to detect if a presheaf � lives in an Ind-
category. The definition we gave required that

� � lim−→�

where � is some small (�-)filtered diagram of representable functors. It turns out that there
is always a canonical way to represent a presheaf as a colimit, and that this representation
can be used to characterize when � ∈ Ind�(C).

Another major goal is to explain a phenomenon whereby a category may be generated
under filtered colimits by compact objects. Consider the following motivating sketches.

Example 13.1. Trivially, Set � PSh(∗), expressing the fact that the category of (small) sets is
freely generated under (small) colimits by a point. Indeed, one only needs small coproducts.
On the other hand, one also has Set � Ind(Fin), expressing that the category of sets is freely
generated by finite sets under filtered colimits. Thiswas implicitly used in the proof computing
the compact objects of Set; there, we noted that any set is the filtered colimit of its poset of
finite subsets.

Example 13.2. Let ¥ be a field. Then

Vect¥ � Ind(Vectf.d.
¥
).

This follows by noting that any ¥-vector space can be written as the union of its finite-
dimensional subspaces.

In order to justify the above examples, our goal is to prove that any category admitting
some small set of compact objects which generate the category under filtered colimits (in the
intuitive sense) can be written as the Ind-category of those compact objects.

13.1 Category of elements

Definition 13.3. LetC be a locally small category, and let� ∈ PSh(C). The category of elements
C/� of � is given by:

★ An object of C/� is a tuple (G, 0)where G ∈ C and 0 ∈ �G.

★ A morphism (G, 0) → (G′, 0′) is a morphism 5 : G → G′ such that (� 5 )(0′) = 0, i.e.
5 ∗0′ = 0.

Remark 13.4. One easily sees that the category of elements C/� can also be described as
follows: an object is a pair (G, 0)where G ∈ C and 0 : ℎG → �; a morphism (G, 0) → (G′, 0′) is
a morphism 5 : G → G′ such that the diagram

ℎG ℎG′

�

5∗

0 0′

commutes. This follows by the Yoneda lemma.
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Remark 13.5. There is a “projection” functor, which we consider canonical, of type

�� : C/�→ C ,

given by sending (G, 0) to G. Observe that for each G ∈ C , the “fiber of �� over G” is exactly
�G. More precisely, consider the subcategory of C/� spanned by those objects of the form
(G, 0), and those arrows which map to idG . This is a discrete category, whose underlying set
of objects is just �G.

Notation 13.6. Let C be a category. We denote by

よ =よC : C ↩→ PSh(C), G ↦→よ(G) := ℎG

the Yoneda embedding.

Lemma 13.7. Let C be a category, and let � be a presheaf on C . Then

� = lim−→(よC ◦ ��).

Colloquially,
� = lim−→

ℎG→�
ℎG .

Proof. Observe that we trivially have a collection of morphisms {0 : ℎG → �}(G,0)∈C/� com-
patible with the morphisms in C/�. In other words, we have a cone underよC ◦�� with tip
�. Suppose we have another such cone {1G,0 : ℎG → �}(G,0)∈C/�. By the Yoneda lemma, this
uniquely induces a morphism  : �→ � for which the diagram

ℎG

� �

0 1G,0



commutes. In particular, the natural transformation  is given by G(0) := 1G,0 , where we
identify the morphisms with their corresponding elements under the Yoneda lemma. It fol-
lows that � forms a colimit ofよC ◦ ��, as desired. �

Corollary 13.8. Let C be a category, and let G ∈ C . Then, for all I ∈ C , we have a natural isomor-
phism

C(I, G) � lim−→
(H→G)∈C/G

C(I, H).

Exercise 37. Let C be a locally small category, and let � ∈ PSh(C). Show that there is an
equivalence PSh(C)/� ' PSh(C/�) such that the diagram

C/� PSh(C)/�

PSh(C/�)
よ ∼

commutes, where the functor C/� → PSh(C)/� is the canonical inclusion induced by the
Yoneda embeddingよC : C ↩→ PSh(C).

Lemma 13.9. Let C be a category, and assume that C admits �-shaped colimits. Consider a presheaf
� ∈ PSh(C). If � commutes with �-shaped limits, so that �(lim−→�) � lim←−(� ◦�

op) for all diagrams
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� : � → C , then C/� admits �-shaped colimits and �� : C/�→ C preserves these colimits.

Proof. Consider a diagram � : � → C/�, 8 ↦→ (�(8), D8 ∈ �(�(8))). Since C admits �-shaped
colimits, the colimit of �� ◦ � exists. Furthermore, since � commutes with �-shaped limits,
we have

�(lim−→
8∈�

�(8)) � lim←−
8∈�

�(�(8)).

The elements D8 then provide an element of the latter, hencewe get an element D ∈ �(lim−→(��◦
�)). Thus, we can lift the colimit in C to an element

(lim−→(�� ◦ �), D) ∈ C/�.

One easily sees that this is a colimit of �. �

Proposition 13.10. Let C be a category admitting �-small colimits, and let � ∈ PSh(C). Then the
following are equivalent:

1. C/� is �-filtered.

2. � preserves �-small limits.

In particular, � is left exact if and only if C/� is filtered.

Proof. Assume (1), and let � : � → C be a �-small diagram. Then

�(lim−→�) = lim−→(よC ◦ ��)(lim−→�)
= lim−→

ℎG→�
C(lim−→

8∈�
�(8), G)

= lim−→
ℎG→�

lim←−
8∈�
C(�(8), G)

� lim←−
8∈�

lim−→
ℎG→�

C(�(8), G) = lim←−
8∈�

�(�(8))

so that (2) holds. Here, we used that �-filtered colimits commute with �-small limits in Set.
Conversely, assume (2). Then C/� admits �-small colimits by Lemma 13.9. But then C/�

is �-filtered: indeed, given a �-small diagram � → C/�, the colimit exists and hence gives
rise to an extension �⊲ → C/�. �

13.2 Cofinality & an intrinsic characterization of Ind-categories

Definition 13.11. Let ! : � → � be a functor. We say ! is cofinal (or final) if for any diagram
� : � → C in a category C , the canonical comparison map

lim−→(� ◦ !) → lim−→�

is an isomorphism. We say � is cofinally small if there is a cofinal functor � → � where � is
small.

While cofinality is an important concept, and widely used, we do not want to spend too
much time on it here, as it can be rather technical.

Proposition 13.12. Let ! : � → � be a functor. The following are equivalent:

(1) ! is final.
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(2) For all diagrams � : � → Set, the canonical comparison map

lim−→(� ◦ !) → lim−→�

is an isomorphism.

(3) For all 9 ∈ �, the comma category 9/! is connected, i.e. it is non-empty, and every two objects
are connected by a zigzag of morphisms.

(4) For all 9 ∈ �, we have lim−→8∈�
�(9 , !(8)) � ∗.

Proof. See [KS06, Prop. 2.5.2]. �

Remark 13.13. The comma category 9/! has as objects pairs (8 , C)where 8 ∈ � and C : 9 → !(8),
and a morphism (8 , C) → (8′, C′) is a morphism B : 8 → 8′ such that C′ = !(B) ◦ C.

Construction 13.14. Consider a locally small category C and a small diagram� : � → C . We
can form the formal colimit of � by taking the colimit

� := lim−→(よC ◦ �)

in the category of presheaves. Let ℎ8 : ℎ�(8) → � be the canonical morphism. This induces a
new diagram

�̃ : � → C/�
given by 8 ↦→ (�(8), ℎ8) on objects, and (C : 8 → 8′) ↦→ �C on morphisms.

Lemma 13.15. Let C be a locally small category, and let � : � → C be a small diagram. Then the
induced diagram �̃ : � → C/� is a cofinal functor.

Proof. By (the same argument as) Lemma 13.9, the functor よ/� : PSh(C)/� → PSh(C)
commutes with small colimits. Observe that we have a commutative diagram

� C/� PSh(C)/�

C PSh(C)

�̃

�
��

よ/�

よ

In particular, the underlying presheaf of lim−→(よ/�◦�̃) is�. One checks, using the equivalence
PSh(C/�) ' PSh(C)/� of Exercise 37, that the structure map is just the identity id� : �→ �,
so that lim−→(よ/� ◦ �̃) is the terminal object in PSh(C)/�. Using the characterization (4) in
Proposition 13.12, one sees that �̃ is cofinal. �

Theorem 13.16. Let C be a locally small category, let � be an infinite regular cardinal, and let
� ∈ PSh(C). Then the following are equivalent:

(1) � ∈ Ind�(C).

(2) C/� is �-filtered and cofinally small.

(3) � commutes with �-small limits and C/� is cofinally small.

Proof. (3) implies (2) by Proposition 13.10. That (2) implies (1) is clear, by Lemma 13.7. Finally,
(1) implies (3) by combining Lemma 13.15 with the same argument as in Proposition 13.10.
�
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Remark 13.17. If we drop the requirement that an Ind-object should be represented by a small
diagram, then we can drop the cofinal smallness condition. Furthermore, if C is actually a
small category, rather than just locally small, thenC/� too is small. Indeed, it is clearly locally
small, and the objects can be realized as a disjoint union of small sets indexed by a small set.
Thus, when C is small, the technicalities presented by cofinal smallness disappear.

Proof of Lemma 12.12. Let � : � → Ind�(C) be a small �-filtered diagram. Let � be the colimit
of � in PSh(C). We will use condition (2) in Theorem 13.16 to show that � ∈ Ind�(C); in
doing this, we will neglect showing that C/� is cofinally small, as it requires a very technical
argument about the interplay between cofinality and �-filteredness. A proof can be found in
[KS06, Thm. 6.1.8].

To see that C/� is �-filtered, consider a diagram  : � → C/�where � is �-small. We need
to find a cone under  . Let D8 : ℎ�(8) → � be the canonical maps, and write Ĉ := PSh(C). For
any (G, 0) ∈ C/�, we have

(Ĉ/�)(ℎG → �, �
id→ �)) � lim−→

8∈�
(Ĉ/�)(ℎG → �, ℎ�(8)

D8→ �))

� lim−→
8∈�

lim−→
(H→�(8))∈C/�(8)

C(G, H).

Now, � is �-filtered by assumption, and C/�(8) has a terminal object and in hence �-filtered,
and therefore

{∗} � lim←−
9∈�
(Ĉ/�)( (9), � id→ �)

� lim←−
9∈�

lim−→
8∈�

lim−→
(H→�(8))∈C/�(8)

C( (9), H)

� lim−→
8∈�

lim−→
(H→�(8))∈C/�(8)

lim←−
9∈�
C( (9), H)

so we find some 8 ∈ � and H0 → �(8), which define an element H = (H0 , ℎH0 → ℎ�(8)
D8→ �),

for which
lim←−
9∈�
(C/�)( (9), H) ≠ ∅.

In other words, we can find a collection of morphisms forming a cone  ⇒ H as desired. �

13.3 Functoriality & universal property of Ind

Here, we should really be spelling out 2-categorical data. We will avoid doing this, however,
and pretend that everything holds strictly for simplicity, as otherwise the technical details
riks obscuring the fundamental ideas, which are very simple.

Proposition 13.18. Let C be a small category, D a locally small category, and let � be an infinite
regular cardinal. Consider a functor � : C → D. Then there is a unique functor Ind�(�) : Ind�(C) →
Ind�(D) commuting with small �-filtered colimits and for which the diagram
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C D

Ind�(C) Ind�(D)

�

よC よD
Ind�(�)

commutes.

Proof. Let � ∈ Ind�(C). Then we have

� = lim−→(C/�
��−→ C よC−→ Ind�(C)).

SinceC is small, C/� is also small. In particular, for Ind�(�) to commutewith small �-filtered
colimits and for the diagram to commute, we must have

Ind�(�)(�) = lim−→(よD ◦ � ◦ ��)

and for a morphism �→ � in Ind�(C), the morphism Ind�(�)(�) → Ind�(�)(�)must be the
canonical morphism

lim−→(よD ◦ � ◦ ��) → lim−→(よD ◦ � ◦ ��).

So we define a unique functor by these requirements. �

The above functoriality statement makes it fairly easy to provide a universal property
for Ind�(C). It expresses that this category is the formal cocompletion of C with respect to
�-filtered colimits.

Lemma 13.19. Let C be a locally small category admitting small �-filtered colimits for some infinite
regular cardinal �.

(1) The functor よC : C → Ind�(C) admits a left adjoint �C : Ind�(C) → C , taking a “formal”
�-filtered colimit to its actual colimit object in C .

(2) The functors compose to give �C ◦よC � 1C .

Proof. Given the construction below (2) is clear, so we do not prove it explicitly. For (1), let
� ∈ Ind�(C), G ∈ C . Then we have natural isomorphisms

Ind�(C)(�,よC (G)) � lim←− Ind�(C)(よC ◦ �� ,よC (G)) � lim←−C(�� , G) � C(lim−→�� , G)

so we are done, since the colimit lim−→�� exists on account of C/� being cofinally small and
�-filtered. �

Theorem 13.20. Let C be a small category, and let � be an infinite regular cardinal. Then Ind�(C)
satisfies the following universal property: for any locally small category D admitting �-filtered col-
imits, and any functor � : C → D, there is a functor �′ : Ind�(C) → D unique up to unique
isomorphism such that the diagram

C D

Ind�(C)

�

�′

commutes up to natural isomorphism and �′ commutes with �-filtered colimits.
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Proof. The functor �′ is given by the composition

Ind�(C)
Ind�(�)−→ Ind�(D)

�D−→ D .

One easily sees that this choice is unique from the uniqueness of Ind�(�). �

13.4 Accessibility

Lemma 13.21. Let � : C → D be a functor, where C is small andD is locally small. Assume further
that the following conditions are satisfied:

(1) D admits small �-filtered colimits.

(2) � is fully faithful.

(3) For all G ∈ C , the object �G ∈ D is �-compact.

Then the induced functor �′ : Ind�(C) → D is fully faithful.

Proof. This is a computation. Let �, � ∈ Ind�(C). Then

Ind�(C)(�, �) � lim←− lim−→ Ind�(C)(よC ◦ �� ,よC ◦ ��)
� lim←− lim−→C(�� ,��)
� lim←− lim−→D(� ◦ �� , � ◦ ��)
� lim←−D(� ◦ �� , lim−→(� ◦ ��))
� D(lim←−(� ◦ ��), lim−→(� ◦ ��)) � D(�

′(�), �′(�))

as desired. �

Theorem 13.22. Let C be a category, and let � be an infinite regular cardinal. Then the following are
equivalent:

(1) There is a small category C0 such that C ' Ind�(C0).

(2) The category C satisfies the following conditions:

(i) C is locally small.
(ii) C admits �-filtered colimits.
(iii) There is a small full subcategory C0 of C consisting of �-compact objects for which every

object of C can be written as the colimit of a �-filtered diagram in C0.

Proof. It is clear that (1) implies (2), effectively by definition. To show that (2) implies (1), the
idea is to show that C ' Ind�(C0) for the chosen full subcategory C0 of �-compact objects.
To do this, consider the canonical functor Ind�(C0) → C induced by universal property from
the inclusion C0 ↩→ C . By assumption, all the conditions of Lemma 13.21 are satisfied, so
this functor is fully faithful. However, it is also essentially surjective by assumption, and
therefore an equivalence. �

Exercise 38. Implicitly, in many places we have used that Ind�(C) is locally small.

(1) Compute the Hom-sets in Ind�(C) in terms of those in C , using that representables are
compact.
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(2) Deduce that Ind�(C) is locally small.

Definition 13.23. Consider a regular infinite cardinal �. We say a category C is �-accessible
if there is a small category C0 such that C ' Ind�(C0). We say that C is accessible if it is �-
accessible for some �. A functor � : C → D between accessible categories is called accessible
if both C andD are �-accesible for some common �, and � preserves �-filtered colimits.

Accessibility is very nearly a purely set-theoretic condition.

Proposition 13.24. Let C be a small category. Then C is accessible if and only if it is idempotent
complete.

Proof. See [MP89, Prop. 2.2.1 & Thm. 2.2.2]. �

Definition 13.25. An accessible category is presentable if it is cocomplete.

Presentable categories are very useful in the context of adjoint functor theorems, because
the automatically satisfy all the conditions for them to hold. In ∞-category theory, this is
often exploited by making use of the∞-category Pr! of presentable∞-categories and func-
tors preserving small colimits. This ∞-category is particularly nice, because it also has the
structure of a symmetric monoidal∞-category under the Lurie tensor product.

Being presentable and �-accessible (that is, �-accessible and cocomplete) is sometimes
refered to as being �-compactly generated, or �-presentable.
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14 Lifting problems & Quillen’s small object argument

In essence, homotopy theory is the study of localizations of categories. For example, clas-
sically one was interested in the localization of some nice category of topological spaces at
the (weak) homotopy equivalences. Studying these kinds of structures takes many forms,
and we have seen a few already in Lectures 5 & 6. However, modern homotopy theory is,
largely speaking, fundamentally phrased in terms of so-called lifting problems. The crux is
that much homotopy theory can be done in the setting of a model category, which makes use
of factorizations of morphisms into pairs (a trivial fibration and a cofibration, or a fibration
and a trivial cofibration) having some lifting property with respect to each other. Pairs of
classes of maps where one can make such factorizations are called weak factorization systems.

The other topic of this lecture, the small object argument (due to Quillen), is a method for
producing factorization systems out of some specified class of maps whose domains are suf-
ficiently compact objects. This is the origin of the name, as compact objects have historically
also been referred to as “small” objects.

14.1 Lifting problems

This is our basic notion for study.

Definition 14.1. Let C be a category. We say amorphism 5 : G → H has the left lifting property
with respect to a morphism 6 : G′→ H′, or that 6 has the right lifting property with respect to
5 , if for any solid diagram

G G′

H H′
5 6

a dashed arrow exists.
Consider some set of maps ( in C . We say 5 has the left lifting property with respect to (

if it has the left lifting property with respect to all elements of (. The case for the right lifting
property is similar.

Remark 14.2. A diagram of the form

G G′

H H′
5 6

describes a lifting problem. A dashed arrow, if one exists, is called a solution to the lifting
problem. In this way, 5 has the left lifting property with respect to 6 if we can solve any
lifting problem with 5 on the left and 6 on the right.

Example 14.3. Let A be an Abelian category. Recall that an object ? ∈ A is projective if
A(?,−) is exact. This essentially reduces to asking that for any epimorphism G � H and
morphism ? → H, there is a lift factoring this through a morphism ? → G. Observe that we
can phrase this as a lifting problem:

0 G

? H

so that ? is projective if and only if the unique map 0→ ? has the left lifting property with
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respect to the set of epimorphisms inA. Dually, an object @ ∈ A is injective if and only if the
unique map 0→ @ has the right lifting property with respect to the set of monomorphisms.

Remark 14.4. In the situation above, where one of the morphisms is trivial, it is common to
omit it entirely. For example, one might write

G

? H

for the lifting problem associated to a projective.

Example 14.5. A map of sets 5 : � → � is surjective if and only if it has the right lifting
property with respect to ∅ ↩→ ∗. This is easy to see; indeed, the diagram is

∅ �

∗ �

5

which tells us that for any element 1 ∈ �, there is some element 0 ∈ � such that 5 (0) = 1, i.e.
5 is surjective.

So, many interesting maps and objects arise in terms of lifting problems admitting a so-
lution. Let us fix some notation for these things, taken from [Rie14].

Notation 14.6. Let C be a category, and let 5 , 6 be two morphisms in C . We write 5 � 6 to
say that 5 has the left lifting property with respect to 6 (or, equivalently, that 6 has the right
lifting property with respect to 5 ).

If ( is a set of morphisms in C , we write (� for those morphisms which have the right
lifting property with respect to (, and dually, �( for those morphisms having the left lifting
propertywith respect to (. If) is another set ofmorphisms, wewrite (�) to say that ( ⊆ �),
or equivalently that ) ⊆ (�.

Remark 14.7. To spell it out, writing ( � ) means that we can solve any lifting problem with
an ( on the left and ) on the right.

Example 14.8. We see from Example 14.5 that

{surjections in Set} = {∅ ↩→ ∗}�.

Example 14.9. Any isomorphism has the left and right lifting property with respect to all
maps. Indeed, you just compose with the inverse of the isomorphism to produce the desired
lift.

Proposition 14.10. LetC be a category, and let ( and) be sets of morphisms inC . Then the following
statements hold.

(1) If ( ⊆ ), then �) ⊆ �(.

(2) If ( ⊆ ), then )� ⊆ (�.

(3) ( ⊆ �((�).

(4) (� = (�((�))�.

(5) �( =
�((�()�).
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Proof. Statements (1), (2), and (3) are trivial. Statements (4) and (5) are dual, so we prove (3).
First, note that one inclusion follows by (2) and (3), i.e.

( ⊆ �((�) =⇒ (�((�))� ⊆ (�.

On the other hand, the other inclusion is also trivial: let 6 ∈ (�; what we have to check is
that �((�) � 6, but to test this, we use a lifting problem against a morphism 5 with the left
lifting property with respect to (�. �

14.2 Saturated classes

Let ( be a class of morphisms in some category C . The set of morphisms �( has some special
properties. We will now explain them. One has already been mentioned: �( contains all
isomorphisms, which is easy to see.

Most of the properties that �( will satisfy are fairly self-explanatory. One, however, is
a bit trickier to make sense of. It is not too hard to see that it is closed under composition.
However, something much stronger is true: it is closed under transfinite composition. For the
purposes of explaining this, we will need to make use of ordinals. Rest assured, we do not
need to know much about them.

Recall that a totally ordered set is a well order if, in addition, every non-empty subset
has a least element. These can be regarded as categories in an obvious way, and an ordinal is
merely an isomorphism class of well ordered sets. In particular, we can view any ordinal  as
a category. Now, the class of ordinals happens to be well-ordered (intuitively, by inclusion),
meaning that for any two ordinals  and � we can also talk about whether � < . In general,
one can identify an ordinal  with the set {� | � < }.

Taking an ordinal  and freely adjoining a terminal element, one obtains the succesor
 + 1. An ordinal � is a limit ordinal if it is non-zero and not the successor of any other
ordinal. Observe that this happens if and only if � is the colimit of all ordinals strictly lesser
than �. Indeed, if � = � + 1, then the colimit would instead be given by �.

Definition 14.11. Let C be a category, let ( be a set of morphisms in C , and let  be some
ordinal. An -composable sequence of morphisms in ( is a diagram G• :  → C with the
following properties.

(1) For any ordinal � <  with a succesor � + 1 < , the corresponding morphism G� →
G�+1 is in (.

(2) G• is “continuous”. That is, for any limit ordinal � < , the canonical morphism

G� → lim−→
�<�

G�

is an isomorphism.

The composition of an -composable sequence of morphisms G• is the canonical map

G0 → G := lim−→ G•.

Let � be a cardinal. We say that ( is closed under �-transfinite compositions if the com-
position of any -composable sequence of morphisms in ( is in ( for all ordinals  with
cardinality strictly less than �.

We say that ( is closed under transfinite compositions if it is closed under �-transfinite com-
positions for all �.
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Remark 14.12. The easiest non-trivial picture here is  = $. Then we just have a sequence

G0 → G1 → · · · → G8 → · · ·

and we require that each G8 → G8+1 is in (. If ( is now closed under transfinite composition,
it means that the map

G0 → G$ := lim−→
8

G8

is in ( too.

Proposition 14.13. The set �( is closed under the following constructs.

(1) Retracts.

(2) Small coproducts, meaning that for any small indexing set � and collection of morphisms { 58 :
G8 → H8}8∈� ⊆ (, the morphism ∐

8∈�
58 :

∐
8∈�

G8 →
∐
8∈�

H8

is in ( whenever it exists.

(3) Pushouts, meaning:

G I

H

(3 {

G I

H H qG I
(3 ∈( .

(4) Transfinite compositions.

Proof. The proofs of all of these facts are very similar. We prove (4) by transfinite induction.
Let  be some ordinal, and consider an -composable sequence of morphisms G• :  → C
in �(. The base case when  = 1 is trivial, so assume we know the result for all � < . If
 = ′ + 1 is a successor ordinal, then if 5 ∈ (, we are in the following situation

G0 G

G′

G′+1 H

�(3

5

�(3

=

G0 G

G′ H

�(3 5
∃ and

G′ G

G′+1 H

�(3 5
∃

giving the desired solution. If  is a limit ordinal, note that a map G → G is given by a
compatible collection ofmaps G� → G for all � < . In particular, by the induction hypothesis,
we then have

∀� < ,

G0 G

G�

G H

�(3

5

∃

{

G0 G

G H

5
∃

so we have our lift here too. This completes the argument. �
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Exercise 39. Complete the above proof.

Definition 14.14. Let C be a category and let � be a cardinal. A set of morphisms ) in C is
said to be weakly �-saturated if it satisfies the following properties.

(1) ) is closed under retracts.

(2) ) is closed under small coproducts that exist in C .

(3) ) is closed under pushouts that exist in C .

(4) ) is closed under �-transfinite compositions that exist in C .

(5) ) contains all isomorphisms.

We say ) is weakly saturated if it is weakly �-saturated for all �. Dually, we say ) is weakly
(�-)cosaturated if )op is weakly (�-)saturated in Cop.

Corollary 14.15. Let ( be a set of morphisms in C . Then �( is weakly saturated and (� is weakly
cosaturated.

Remark 14.16. In [Cis19, Remark 2.1.3], it is pointed out that the above list has a redundancy.
In fact, being closed under transfinite composition and pushouts implies being closed under
small coproducts.

Notation 14.17. Let ( be some collection ofmorphisms inC . Wewrite (
(�)

for the �-saturation
of (, i.e. the smallest weakly �-saturated collection of morphisms containing (. Similarly, we
write ( for the smallest weakly saturated collection of morphisms containing (.

Remark 14.18. Observe that since �((�) is saturated and contains (, we have ( ⊆ �((�).
We will see that in favourable situations, this inclusion is an equality. This is one of the
consequences of the small object argument.

Additionally, we have that for all cardinals � < �′, (
� ⊆ (�

′
⊆ (.

14.3 Weak factorization systems

We begin with the following motivating example.

Example 14.19. We saw that the set of surjections in Set were characterized by having the
right lifting property with respect to ∅ ↩→ ∗. One may ask: what are

{surjections}� and �{surjections}?

Curiously, the answer is the same in both cases, namely you recover the collection of injective
maps. Proving thismakes use of the axiom of choice, andwewill not discuss it. Nonetheless,
it is interesting to us because the following much more trivial fact: any map of sets can be
decomposed into an injective map followed by a surjective map.

Definition 14.20. Let C be a category. A weak factorization system on C is a pair ((, )) of
collections of maps satisfying the following properties.

(a) The collections ( and ) are closed under retracts.

(b) For all 5 : G → H in C , there is a factorization 5 = ? ◦ 8 with 8 ∈ ( and ? ∈ ).

(c) ( � ).
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Lemma 14.21: “The retract lemma”. Suppose we have a factorization

G H

I

5

8 ?
.

Then the following statements hold.

(1) If 8 � 5 then 5 is a retract of ?.

(2) If 5 � ?, then 5 is a retract of 8.

Proof. Statements (1) and (2) are dual, so we prove (1). The lifting problem below left

G G

I H

8 5
?

∃ {

G I G

H H H

5

8

? 5

gives rise to the retraction as above right, as desired. �

Proposition 14.22. Suppose we have a pair ((, )) of collections of morphisms satisfying property
(b) in Definition 14.20. Then the following are equivalent.

(1) ((, )) is a weak factorization system.

(2) (� = ) and ( = �).

Proof. It is clear that (2) implies (1) (note Corollary 14.15), so what remains is the other di-
rection. We are given that (� ⊇ ) and ( ⊆ �) (which are equivalent). To get the other
inclusions, suppose 5 ∈ (�. We may then write 5 = ? ◦ 8 for 8 ∈ ( and ? ∈ ), but by Lemma
14.21 and the fact that 8 � 5 , we see that 5 is a retract of ?. Since ) is closed under retracts,
5 ∈ ). The other case is dual. �

14.4 Quillen’s small object argument

A priori, it is very hard to produce weak factorization systems. In particular, while it is not
at all hard to find nice pairs of collections of morphisms with some lifting properties with
respect to each other, manufacturing factorizations into these morphisms is tricky. Quillen
provided a tool of great ingenuity for tackling this problem, namely the small object argument.
There are a number of versions of it; we choose one which is fairly intelligible.

Proposition 14.23: Small object argument. Let C be a locally small category admitting all small
colimits, let � be an infinite regular cardinal, and let " be some collection of morphisms in C with
�-compact domains. Then (�("�), "�) is a factorization system.

Proof. By construction, conditions (a) and (b) of Definition 14.20 are already satisfied. In
other words, the crux of this proposition is the existence, for all 5 : G → H in C , of a factor-
ization 5 = ℎ ◦ 6 where 6 ∈ �("�) and ℎ ∈ "�. In fact, we will prove something slightly
stronger: we can choose 6 ∈ "�

, which implies the former by Remark 14.18.
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The strategy of the proof is to approximate 5 by a morphism in ". To this end, for any
map 0 : D → E, define the set

�"(0) :=


I D

F E

B 0 : B ∈ "
 ,

which consists of all morphisms B ⇒ 0 in Ar(C) � Fun([1],C). We observe that this set is
small since " is small and C is locally small.

For notational simplicity, given a commutative square 8 ∈ �"(0), we write I8 , F8 , and B8
for the corresponding data as above. Note that we leave the horizontal maps unnamed since
we will not need them by name. Now, using �"(0) we can associate to 0 an object D" and a
pair of maps 6(0) : D → D" and ℎ(0) : D" → E such that

0 = ℎ(0) ◦ 6(0), and 6(0) ∈ "�
.

In other words, a factorization almost like what we want. The procedure is the following:
taking the coproduct over all 8 ∈ �"(0), we get a diagram∐

8∈�" (0) I8 D

∐
8∈�" (0) F8 E

∐
8 B8 0

by composing horizontally with the codiagonal. Taking the pushout of the morphism on the
left, we get ∐

8∈�" (0) I8 D

∐
8∈�" (0) F8 D"

E

∐
8 B8

0

6(0)

ℎ(0)

which defines our maps. We have that 6(0) ∈ "�
since the latter is stable under small co-

products and pushouts.
If we apply the above to 5 , we get a factorization 5 = ℎ( 5 ) ◦ 6( 5 ) where 6( 5 ) ∈ "

�
.

However, we do not know that ℎ( 5 ) ∈ "�, so our approximation isn’t good enough. To
remedy this, we will approximate again and again, inductively, and in fact do it � times.

Set G0 = G, ℎ0 = 5 . We obtain 60,1 := 6(ℎ0) : G0 → (G0)" =: G1 and ℎ1 := ℎ(ℎ0). We
continue inductively as follows: for any successor ordinal  + 1, supposing we have defined
G, ℎ : G → H, and 6�, : G� → G for all � ≤ , we define

G+1 = (G)" , 6�,+1 := 6(ℎ) ◦ 6�, , ℎ+1 = ℎ(ℎ).

We remark that 6, = idG , and therefore 6,+1 = 6(ℎ). For a limit ordinal� ≤ �, we define
G� and ℎ� by

G0
ℎ�−→ lim−→

�<�

G� =: G�.
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For any � < � we obtain the canonical morphism 6�,� : G� → G�.
We get an object G� and a pair of maps

G
60,�−→ G�

ℎ�−→ H,

so we set 6 = 60,� and ℎ = ℎ�. These satisfy 5 = ℎ ◦ 6, and 6 ∈ "�
since the latter is closed

under �-transfinite compositions. It remains to check that ℎ ∈ "�.
Consider a lifting problem

I G�

F H

"3B ℎ
∃?

to be solved. By definition, G� = lim−→�<�
G�, which is a �-filtered colimit. Hence, the �-

compactness of I means there is some  < � and a factorization

I G�

G

F H

B ℎ

ℎ

6,�
.

Now comes the genius trick: the square defined by the bottom left morphisms

I G

F H

B ℎ

is exactly a square used in defining G+1 = (G)< . This means precisely that we can factorize
further into

I G�

G

G+1

F H

B ℎ6+1

6,�

ℎ+1

6+1,�

where we thus obtain our solution to the lifting problem. �

Corollary 14.24. Let C be a locally small category admitting all small colimits, and suppose " is a
collection of maps whose domains are all �-compact for some fixed cardinal �. Then " =

�("�).

Proof. The proof of Proposition 14.23 shows that (","�) is a weak factorization system.
However, by Proposition 14.22, one then has

" =
�("�)

as desired. �
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Remark 14.25. In [Rie14, §12.2], there is a brief discussion of various kinds of assumptions
one can take to get a small object argument. In the above, we’ve chosen a somewhat straight-
forward one, modulo the details imposed by allowing any cardinal �. One can weaken the
assumptions drastically. For example, we do not need the domain of a morphism B : I → F

in " to be entirely �-compact, as we only use that C(I,−) commutes with �-filtered colim-
its of morphisms in "

�
. Furthermore, we only use one particular kind of �-filtered colimit,

namely a transfinite composition of �-many arrows.

Exercise 40. Show that the factorization produced from the small object argument is in fact
functorial, meaning that there is a functor Fun([1],C) → Fun([2],C) describing it.

14.5 Appendix: Transposing lifting problems along adjunctions

There are a few ways that lifting problems can be moved across adjunctions, and it is very
useful to be aware of them, as a number of techniques in categorical homotopy theory (for
example, of simplicial sets) come down to convering a difficult lifting problem to an easy one
through some adjunction you have available to you.

The following is the easiest possible case. It is taken from [Rie14, Lemma 11.1.5], though
the overall argument is of course standard.

Proposition 14.26. Let C D
�

�

a be an adjunction, and suppose we have collections of morphisms

( ⊆ Mor(C) and ) ⊆ Mor(D). Then �(()� ) if and only if ( � �()).

Proof. Specializing the belowLemma 14.27 to the caseℰ = [1], we see that there is an induced
adjunction

Fun([1],C) Fun([1],D)

�∗

�∗

a

on the arrow categories, where we note that Ar(−) � Fun([1],−). The setup for a lifting
problem is precisely amorphism in an arrow category, sowe get a bijection between a squares
�8 ⇒ 5 inD as below left, and solid squares 8 ⇒ � 5 in C as below right:

�0 G

�1 H

�8 5
ℎ ¡

0 �G

1 �H

8 � 5ℎ′ .

Moreover, a solution ℎ as above left is exactly the same as a morphism in Fun([2],D) as
below left, which by the same argument means we have a correspondence with a solution ℎ′
as below right

�0 G

�1 G

�1 H

�8

ℎ

5

¡

0 �G

1 �G

1 �H

8

ℎ′

� 5

which completes the argument. �
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Lemma 14.27. Let C D
�

�

a be an adjunction. Then, for any category ℰ, there is an induced

adjunction

Fun(ℰ,C) Fun(ℰ,D)

�∗

�∗

a

Proof. The functors �∗ and �∗ are defined by postcomposition, so e.g. �∗ : � ↦→ ��, and
(� : � ⇒ �′) ↦→ (�� : �� ⇒ ��′). Let � and � be the unit and counit of the adjunction
� ` �. We then obtain natural transformations

�′ : 1⇒ �∗�∗ , �′ : �∗�∗ ⇒ 1

given by
�′� := ��, �′ := � .

These satisfy the triangle identities. Indeed, it suffices to check at each component, at which
point one is checking the commutativity of the diagrams

����

�� ��

������ and
��� 

� � 

�� �� 

which follows from the original triangle identities. �

The above is pleasingly simple, but unfortunately also fairly uncommon in practice. Usu-
ally, one is in a somewhatmore complex situation, involving a two-variable adjunction instead.
Those are perhaps surprisingly common, so we will take the time to explain them in detail,
following [Rie14]. First, we need the notion of what a two-variable adjunction is to begin
with.

Definition 14.28. A two-variable adjunction consists of functors

− ⊗ − : C ×D → ℰ, {−,−} : Cop × ℰ → D , [−,−] : Dop × ℰ → C ,

equipped with natural isomorphisms

ℰ(2 ⊗ 3, 4) � D(3, {2, 4}) � C(2, [3, 4])

of functors Cop ×Dop × ℰ → Set.

Remark 14.29. Here, we should think of the {−,−} and [−,−] functors as “internal Hom’s”
of a sort. Indeed, typical examples of two-variable adjunctions come exactly from such situ-
ations, in which case {−,−} = [−,−]. The easiest example is then when ⊗ = × and

{−,−} = [−,−] = Set(−,−).
Before we do anything serious with these, let’s prove a small but useful lemma, which

will be extremely helpful to us very soon.

Lemma 14.30. Consider a two-variable adjunction

− ⊗ − : C ×D → ℰ, {−,−} : Cop × ℰ → D , [−,−] : Dop × ℰ → C ,
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equipped with natural isomorphisms having components

234 : ℰ(2 ⊗ 3, 4) � D(3, {2, 4}), �234 : ℰ(2 ⊗ 3, 4) � C(2, [3, 4]).

Suppose we have morphisms

8 : 2 → 2′, 9 : 3→ 3′, ℎ : 2′ ⊗ 3→ 4 , ℎ′ : 2 ⊗ 3′→ 4.

Then

(2 ⊗ 3 8⊗3−→ 2′ ⊗ 3 ℎ−→ 4) = 3
(ℎ)−→ {2′, 4} {8 ,4}−→ {2, 4}, and

�(2 ⊗ 3
2⊗ 9
−→ 2 ⊗ 3′ ℎ′−→ 4) = 2

�(ℎ′)
−→ [3′, 4]

[9 ,4]
−→ [3, 4].

Proof. Wewill prove the first statement, as the second is basically dual. Naturality of means
we have the commutative diagram

ℰ(2′ ⊗ 3, 4) D(3, {2′, 4})

ℰ(2 ⊗ 3, 4) D(3, {2, 4})
(8⊗3)∗

∼
2′34

{8 ,4}∗
∼

234

which says exactly that
234(ℎ ◦ (8 ⊗ 3)) = {8 , 4} ◦ 2′34(ℎ)

as desired. �

Construction 14.31: The “Leibniz construction”. Suppose we have a two-variable adjunc-
tion

− ⊗ − : C ×D → ℰ, {−,−} : Cop × ℰ → D , [−,−] : Dop × ℰ → C ,
and that the following properties hold.

(i) C andD have pullbacks.

(ii) ℰ has pushouts.

For simplicity, let us write ℬA := Fun(A,ℬ). Then there is an induced two-variable adjunc-
tion

−⊗̂− : C [1] ×D[1] → ℰ[1] , ˆ{−,−} : (C [1])op × ℰ[1] →D[1] , ˆ[−,−] : (D[1])op × ℰ[1] → C [1]

on the level of arrow categories.
Here’s how they’re defined on objects: the “left adjoint” −⊗̂− is given, on 8 : 2 → 2′ in C

and 9 : 3→ 3′ inD, by

2 ⊗ 3 2′ ⊗ 3

2 ⊗ 3′ (2 ⊗ 3′) q
2⊗3
(2′ ⊗ 3)

2′ ⊗ 3′

8⊗3

2⊗ 9 2′⊗ 9

8⊗3′

8⊗̂ 9
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which one easily verifies is functorial. The other functors are similarly defined, except using
pullbacks instead. In particular, given 5 : 4 → 4′, we have

{2′, 4}

{2, 4} ×
{2,4′}
{2′, 4′} {2, 4}

{2′, 4′} {2, 4′}

ˆ{8 , 5 }

{8,4}

{2′, 5 } {2, 5 }

{8 ,4′}

[3′, 4]

[3, 4] ×
[3,4′]
[3′, 4′] [3, 4]

[3′, 4′] [3, 4′]

ˆ[9 , 5 ]

[9 ,4]

[3′, 5 ] [3, 5 ]

[9 ,4′]

which one also easily verifies are functorial.
We must now verify that this is actually a two-variable adjunction, meaning we want to

show that
ℰ[1](8⊗̂ 9 , 5 ) � D[1](9 , ˆ{8 , 5 }) � C [1](8 , ˆ[9 , 5 ]).

We will neglect checking naturality carefully, as it is not particularly insightful. Suppose we
are given a morphism (0, 1) : 8⊗̂ 9 ⇒ 5 as displayed below left; then, by Lemma 14.30, we
have natural one-to-one correspondences

(2 ⊗ 3′) q
2⊗3
(2′ ⊗ 3) 4

2′ ⊗ 3′ 4′

8⊗̂ 9

0

5

1

¡
2 ⊗ 3 2′ ⊗ 3 4

2 ⊗ 3′ 2′ ⊗ 3′ 4′

0′

5

1

¡
3 {2′, 4} {2, 4}

3′ {2′, 4′} {2, 4′}

0′

9 5

1

¡

3 {2′, 4}

3′ {2, 4} ×
{2,4′}
{2′, 4′}

0′

9 ˆ{8 , 5 }
1
′

The crux of the calculation for ˆ[−,−] is the same.

Proposition 14.32. Consider a two-variable adjunction

− ⊗ − : C ×D → ℰ, {−,−} : Cop × ℰ → D , [−,−] : Dop × ℰ → C ,

where C andD admit pullbacks, and ℰ admits pushouts. Suppose we have collections of morphisms
� ⊆ Mor(C), � ⊆ Mor(D), and � ⊆ Mor(ℰ). Then

�⊗̂� � � ⇐⇒ � � ˆ{�, �} ⇐⇒ � � ˆ[�, �].

Proof. A lifting problem 8⊗̂ 9 ⇒ 5 transposes to 9 ⇒ ˆ{8 , 5 } and 8 ⇒ ˆ[9 , 5 ], and one easily sees
that solutions also transport across these. �

Remark 14.33. We were inexplicit in the above proof to demonstrate how little is really going
on. However, it is still insightful to show the inner workings of the calculation, so we will
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be explicit, instead, in this remark. Take the calculation from Construction 14.31; filling in a
diagonal arrow for the desired lifts, we see that all that’s happening is

(2 ⊗ 3′) q
2⊗3
(2′ ⊗ 3) 4

2′ ⊗ 3′ 4′

8⊗̂ 9

0

5

1

¡
2 ⊗ 3 2′ ⊗ 3 4

2 ⊗ 3′ 2′ ⊗ 3′ 4′

0′

5

1

¡
3 {2′, 4} {2, 4}

3′ {2′, 4′} {2, 4′}

0′

9 5

1

¡

3 {2′, 4}

3′ {2, 4} ×
{2,4′}
{2′, 4′}

0′

9 ˆ{8 , 5 }

1
′

where the intermediate step is entirely about ordinary “one-variable” adjunctions, and fol-
lows purely by Proposition 14.26.

There are two main examples of applications that will eventually come up for us, both
of which are in the homotopy theory of simplicial sets. In particular, in the study of ∞-
categories. The most easy to understand out of them is the statement that for an∞-category
C and a simplicial set  , the simplicial set of “functors” Fun( ,C) is an ∞-category. This
turns out to be a statement one should deduce from a more general fact, namely that the
canonical map

Fun(!, -) → Fun( , -) ×Fun(!,.) ( ,.),
is a Joyal fibration, where  → ! is a monomorphism of simplicial sets and - → . is a Joyal
fibration.

156



15 Homotopy theory in model categories

Model categories are, in short, a systematic framework for doing homotopy theory, meaning
it is a tool for controlling localizations of categories. Previously, when trying to understand
relative categories (C ,,), we have made use of the assumption that , is a (right or left)
multiplicative system, which allows us to understand the morphisms a lot more cleanly due
to the calculus of fractions.

Model categories take a different approach. Essentially, they introduce what one might
describe as phantom structure: the data of fibrations and cofibrations, “meaningless” on their
own, the (imposed) properties of which allow you to describe the localization in terms very
similar to the homotopy theory of topological spaces. Essentially, the (co)fibrations provide
distinguished classes of “nice” objects andmorphisms. Model categories also provide a very
convenient setting in which to understand homotopical analogues of limits and colimits,
though in a sense this is hardly unique to them, and is really a consequence of a good theory
of derived functors.

For the material here, we mainly follow [Rie14], [Cis19], and [MP12].

15.1 Model categories

Definition 15.1. Let C be a category. Amodel structure on C is a triple (Cof ,,,Fib) of sets of
morphisms in C satisfying the following conditions.

(1) The set, has the 2-out-of-3 property.

(2) The pairs (Cof ,Fib∩,) and (Cof ∩,,Fib) are weak factorization systems on C .

A category C with a model structure is called a model category if, in addition, C admits finite
limits and finite colimits.

Terminology 15.2. Given a model structure (Cof ,,,Fib) on C , one calls a morphism 5 in C

• a cofibration if 5 ∈ Cof ,

• a fibration if 5 ∈ Fib,

• a weak equivalence if 5 ∈, , or

• a trivial (co)fibration if 5 is both a weak equivalence and (co)fibration.

Suppose C is a model category. One says an object G ∈ C is

• fibrant if G → ∗ is a fibration, where ∗ ∈ C is the terminal object, or

• cofibrant if ∅ → G is a cofibration, where ∅ ∈ C is the initial object.

Remark 15.3. There are a few different variations on the definition of a model category, and
we use the one in [Cis19]. It is fairly common to assume a model category admits all small
limits and colimits, and further, that the factorization systems are functorial, meaning that
the factorizations can be chosen to determine functors Fun([1],C) → Fun([2],C). As many
examples of model categories are produced by using the small object argument, which pro-
duces functorial factorizations, this is often satisfied, but it is also not really necessary for the
theory to a large extent. Note, however, that a big convenience in having functorial factoriza-
tions is that choosing a (co)fibrant replacement (obtained by factorizing either∅ → G or G → ∗)
determines a deformation in the sense of Lecture 6, and thus the theory of derived functors
becomes very nice.
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Notation 15.4. We write C2 for the full subcategory of cofibrant objects; dually, C 5 for the
full subcategory of fibrant objects. Combining the two, we write C2 5 for the full subcategory
of objects which are both fibrant and cofibrant.

Notation 15.5. We adopt the following notation, in situations where no ambiguity is ex-
pected: ∼−→ denotes a weak equivalence, � denotes a fibration, and � denotes a cofibration.

Remark 15.6. Observe that a model structure has a large amount of redundant information:
if one exists, it is completely determined by its weak equivalences and either the trivial fi-
brations or trivial cofibrations. This is a corollary of Proposition 14.22; suppose we know,

and Fib∩, . Then
Cof = �(Fib∩,), { Fib = (Cof ∩,)� ,

which recovers the triple (Cof ,,,Fib).
This also means that, contains a weakly saturated class of morphisms, namely Fib∩, ,

and therefore contains all isomorphisms. In particular, all identities, so, determines a wide
subcategory with the 2-out-of-3 property. We conclude that (C ,,) is a pseudo-homotopical
category, in the terminology of Lecture 6. In fact, we will see that, necessarily also satis-
fies the 2-out-of-6 property, so that (C ,,) is moreover a homotopical category. The reader
should therefore not spend any time seeking examples of model categories whose weak
equivalences do not satisfy the 2-out-of-6 property.

Remark 15.7. In many cases, model structures are constructed using the small object argu-
ment, such as the one we give in Proposition 14.23. That is, one has some class of basic cofi-
brations � from which one forms the factorization systems (�(��), ��) using the small object
argument. Choosing some basic class of trivial cofibrations �, one can then form (�(��), ��).
If � and � are chosen such that �� ⊆ , and �(��) ⊆ , , then this will yield a model structure
given by

(Cof ,,,Fib) = (�(��),,, ��).
In general, model structures for which one can find some collections of maps � and � gen-
erating the (trivial) cofibrations are called cofibrantly generated, and they have a number of
benefits. For example, since the small object argument provides functorial factorizations,
any such model structure of course admits this extra structure.

Construction 15.8: Opposites. Let (C ,Cof ,,,Fib) be a model category. Then the triple
(Fibop ,,op ,Cofop) is a model structure on Cop, so Cop can be promoted to a model category
as well. Furthermore, this demonstrates that fibrations and cofibrations are dual to each
other, such that any result about cofibrations dualizes to a result about fibrations.

Construction 15.9: Slices. Let C be a model category, and let G ∈ C . Then C/G can be pro-
moted to amodel category. In particular, let a morphism in C/G be a weak equivalence (resp.
fibration, cofibration) if it is a weak equivalence (resp. fibration, cofibration) in C . Dualizing
yields that G/C can be promoted to a model category in a similar way.

Proposition 15.10. Let (C ,Cof ,,,Fib) be a model category. Then Cof is weakly saturated and
Fib is weakly cosaturated. In particular, whenever it makes sense,

(1) Cof is closed under retracts, compositions, small coproducts, and pushouts, and

(2) Fib is closed under retracts, compositions, small products, and pullbacks.

Proof. Follows by Proposition 14.15 and Proposition 14.22. �
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15.2 Ken Brown’s lemma & some basic techniques

Recall the importance of functors being homotopical in the construction of derived functors;
see Lecture 6. In a model category, the morphisms which are easily controlled are the (co)fi-
brations, and the objects with nice properties are the (co)fibrant ones. Consequently, it is
often the case that one canmore easily say things about, say, trivial cofibrations between cofi-
brant objects than about weak equivalences in general. The below result is useful in these
circumstances.

Lemma 15.11: Ken Brown’s lemma. Let C be a model category, and letD be a pseudo-homotopical
category. Suppose we have a functor � : C → D. Then the following are equivalent.

(1) � is homotopical on the full subcategory of cofibrant objects, i.e. � sends weak equivalences
between cofibrant objects to weak equivalences.

(2) � sends trivial cofibrations between cofibrant objects to weak equivalences.

Proof. The implication (1)⇒ (2) is clear. For the converse, the idea is that we may rewrite
any weak equivalence between cofibrant objects in terms of trivial cofibrations. Suppose we
have a morphism 5 : G → H where G, H ∈ C2 . Form their coproduct Gq H and factor the map
Gq H → H given by 5 : G → H and idH : H → H into a cofibration followed by a trivial fibration

∅ G

H G q H

�G
�H

{

G

G q H I H

H

�G

∼
5

∼

�H

and, using the left diagram, note that since cofibrations are closed under pushouts, �G and �H
are cofibrations. In particular, the compositions

8 : G
�G
� G q H � I, 9 : H

�H
� G q H � I

are both cofibrations (by composition) and weak equivalences (by 2-out-of-3), hence trivial
cofibrations. By commutativity, we have

9 ◦ 5 = 8 =⇒ �(9) ◦ �( 5 ) = �(8)

which implies �( 5 ) is a weak equivalence by the 2-out-of-3 property. �

Remark 15.12. The above result is a simple but good example of how (co)fibrations and (co)fi-
brant objects can help us despite not being intrinsically meaningful.

Before we move on to showing how homotopy theory may be done in the context of a
model category, let us prove a nice property of the weak equivalences. Recall that isomor-
phisms are closed under retracts, as was shown in Lemma 12.7. This also holds for the weak
equivalences in a model category. The proof is interesting, as it demonstrates a typical ap-
proach employed in the context of a model structure, namely to prove something for the
(co)fibrations, and then lift it to all morphisms by using the factorization properties.

Lemma 15.13. Let C be a model category. If a fibration in C is the retract of a weak equivalence,
then it is a trivial fibration.
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Proof. Let 5 : G � H be fibration which is the retract of a weak equivalence F : G′→ H′. First,
factor F into a composition E ◦ D using either factorization system, and observe that by the
2-out-of-3 property, both D and E are weak equivalences (and hence a trivial cofibration and
trivial fibration, respectively), so we have

G G′ G

H H′ H

5 F ∼ 5 {

G G′ G

I′

H H′ H

5

D ∼

5

E ∼

.

Composing in the obvious way, we get a morphism B : G → I′, and by considering the lifting
problem as below left (obtained by the other obvious composition), we thus have the diagram
below right:

G′ G

I′ H

D ∼ 5
C {

G G′ G

I′

H H′ H

5

B
D ∼

5

E ∼

C

.

By commutativity, we see that C ◦ B = id, so that 5 is a retract of E. Since trivial fibrations are
weakly cosaturated (by Proposition 15.10), they are closed under retracts, and hence 5 is a
trivial fibration. �

Proposition 15.14. Let C be a model category. Then the weak equivalences are closed under retracts.

Proof. Let 5 : G → H be a retract of a weak equivalence F : G′→ H′,

G G′ G

H H′ H

5

A

F ∼ 5

B

.

Factor 5 = ℎ ◦ 6 as a trivial cofibration 6 followed by a fibration ℎ. Our goal is to show that
ℎ is the retract of a weak equivalence, so that, applying Lemma 15.13, 5 is a composition of
weak equivalences. To this end, consider the pushout below left

G G′

I I′

6 ∼ 8

:

{

G G′ G

I I′ I

H H′ H

6 ∼ F

∼

8 ∼ 6 ∼

ℎ

:

9 ℎ

and note that trivial cofibrations, beeing weakly saturated, are closed under pushouts.
Hence, 8 is a trivial cofibration. The morphism 9 in the diagram above right is induced by
universal property applied to the morphisms F and B ◦ ℎ; since 9 ◦ 8 = F and both 8 and F
are weak equivalences, we deduce that 9 is a weak equivalence.

For the final step, observe that the identity idI : I → I together with the composition 6 ◦ A
induce, by universal property, a map ℓ : I′ → I for which ℓ ◦ : = idI and ℓ ◦ 8 = 6 ◦ A. By
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universal property, one can check that the remaining bottom right square in the diagram

G G′ G

I I′ I

H H′ H

6 ∼ 8 ∼ 6 ∼

ℎ

:

9

ℓ

ℎ

commutes (by using that there is a unique map I′ → H which after composition with 8 or :
yields the outer paths of the square), so the entire diagram commutes. In particular, ℎ is a
retract of the weak equivalence 9. �

15.3 Cylinders, paths, and homotopies

Recall that in standard algebraic topology, one has the notion of a homotopy between two
continuous maps 5 , 6 : - → .. Intuitively, this is some kind of continuous family of maps
- → . which explains how to “deform” 5 into 6 (or vice versa). Formally, this is usually
captured by having a continuous map � : [0, 1] × - → . such that �(0, G) = 5 (G) and
�(1, G) = 6(G) for all G ∈ -.

On the other hand, whenever it exists, one can also encode the notion of a homotopy as
a path in the function space .- . The issue with this is that the function space doesn’t always
exist, in the sense that one may fail to have a bijection

Top([0, 1] × -,.) � Top([0, 1], .-).

Still, when it does happen to make sense, it’s a very intuitive way to define homotopies.
Slightly less intuitive is the expression obtained by considering the other possible adjunction,

Top([0, 1] × -,.) � Top(-,.[0,1]),

passing through the path space, where a homotopy from 5 to 6 is a continuous map ℎ : - →
.[0,1] such that ℎ(G)(0) = 5 (G) and ℎ(G)(1) = 6(G).

These two approaches can be partially employed in any relative category, and especially
well in the context of a model structure.

Definition 15.15. Let (C ,,) be a relative category, and let G ∈ C be an object.

(i) A cylinder object for G is an object �G ∈ C together with maps

G q G �G G
(80 ,81) ?

such that ? ◦ 8: = idG , : = 0, 1, and ? ∈, .

(ii) A path object for G is an object G� ∈ C together with maps

G G� G × G8 (?0 ,?1)

such that ?: ◦ 8 = idG , : = 0, 1, and 8 ∈, .

Remark 15.16. Note that these are not defined by universal property, and so do not need to
be unique in any way, a priori.

Remark 15.17. If (C ,,) is pseudo-homotopical in the sense of Lecture 6, then the 2-out-of-3
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property shows that the 8: and ?: are weak equivalences.

Definition 15.18. Let C ,, be a relative category, and let 5 , 6 : G → H be morphisms in C .

(i) Consider a cylinder object �G for G. A left homotopy from 5 to 6 (with respect to �G) is a
morphism ℎ : �G → H such that ℎ◦ 80 = 5 and ℎ◦ 81 = 6. Wewrite ℎ∼ℓ for the equivalence
relation on C(G, H) generated by the existence of a cylinder object for G together with a
left homotopy from one morphism to another, and set

[G, H]ℓ := C(G, H)/ ℎ∼ℓ .

(ii) Consider a path object H� for H. A right homotopy from 5 to 6 (with respect to H�) is
a morphism ℎ′ : G → H� such that ?0 ◦ ℎ′ = 5 and ?1 ◦ ℎ′ = 6. We write ℎ∼A for
the equivalence relation on C(G, H) generated by the existence of a path object for H
together with a right homotopy from one morphism to another, and set

[G, H]A := C(G, H)/ ℎ∼A .

Remark 15.19. A warning to observe is that 5 ℎ∼ℓ 6 (and its dual) does not merely ask that
there is a left homotopy from 5 to 6, since that is not necessarily an equivalence relation.
This is why we must ask for the equivalence relation generated by that simpler relation. In
general, 5 ℎ∼ℓ 6 means that there is some chain of left homotopies starting at 5 and ending
with 6. See the proof of Proposition 15.26 for an explanation of what properties the relation
of left homotopy satisfies, and when it forms an equivalence relation.

Remark 15.20. Wewant to emphasize that the relations ℎ∼ℓ and ℎ∼A do not require a fixed choice
of cylinder object or path object, and rather allow any choice for defining a homotopy.

At this level of generality, there is not much one can say, but with a small added hypoth-
esis, one can at least say the following:

Lemma 15.21. Let (C ,,) be a pseudo-homotopical category, and suppose we have morphisms 5 , 6 :
G → H and a left homotopy ℎ from 5 to 6. Then 5 is a weak equivalence if and only if 6 is a weak
equivalence.

Proof. We have the diagram
G

�G H

G

80 ∼

5

ℎ

81 ∼ 6

and therefore 5 ∈, if and only if ℎ ∈, if and only if 6 ∈, , by the 2-out-of-3 property. �

Remark 15.22. By the description of the equivalence relation ℎ∼ℓ , it follows that if 5 ℎ∼ℓ 6 then
5 ∈, if and only if 6 ∈, .

The above definitions can bemade in any relative category, as we have done, but typically
one will work within a model category, in which case one can add some more conditions to
make the definitions substantially more powerful.

Definition 15.23. Let C be a model category, and let G ∈ C be an object.
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(i) Consider a cylinder object (�G, 80 , 81 , ?) for G. We say �G is a good cylinder object if (80 , 81) :
Gq G → �G is a cofibration, We say �G is a very good cylinder object if it is good, and ? is
a trivial fibration. A left homotopy is (very) good if the corresponding cylinder object
is (very) good.

(ii) Consider a path object (G� , 8 , ?0 , ?1) for G. We say G� is a good path object if (?0 , ?1) :
G� → G × G is a fibration, We say G� is a very good path object if it is good, and 8 is a
trivial cofibration. A left homotopy is (very) good if the corresponding path object is
(very) good.

Lemma 15.24. Let C be a model category, let G ∈ C2 be a cofibrant object, and let (�G, 80 , 81 , ?) be a
good cylinder object. Then 80 and 81 are trivial cofibrations.

Proof. Weknow that 80 and 81 areweak equivalences by the 2-out-of-3 property, sowe need to
show they are cofibrations. However, the canonical inclusions �: : G → Gq G are cofibrations
(being pushouts of the cofibration ∅ → G), and

8: = (80 , 81) ◦ �:

so that 8: , : = 0, 1, are cofibrations. �

Proposition 15.25. Let C be a model category. Then the following statements hold.

(1) For any object G ∈ C there exists a very good cylinder object and a very good path object.

(2) For two morphisms 5 , 6 : G → H, there exists a left (resp. right) homotopy from 5 to 6 if and
only if there exists a good left (resp. right) homotopy from 5 to 6.

Proof. (1) Factorize the codiagonal and diagonal maps

∇G : G q G → G, ΔG : G → G × G

using the appropriate factorization system.
(2) Obviously, one direction is trivial. For other, let ℎ : �G → H be a left homotopy from 5

to 6. The strategy is similar to (1), except that we factorize the map (80 , 81) : Gq G → �G to get

G q G �′G �G
(8′0 ,8′1) ∼

which now defines a good cylinder, where the map ?′ : �′G → G is defined by composing
�′G

∼
� �G

∼→ G. One immediately sees that the morphism ℎ′ given by the composition �′G →
�G

ℎ→ H defines a good homotopy from 5 to 6. The proof for right homotopies is similar. �

We remarked earlier that since the existence of a left homotopy doesn’t form an equiv-
alence relation, we are forced to consider the equivalence relation generated by the former
to get ℎ∼ℓ . Naturally, one wonders what the obstruction is, as in standard algebraic topology,
homotopy is easily seen to be an equivalence relation. The below proposition provides an
answer.

Proposition 15.26. Let C be a model category, let G, H ∈ C and assume G is cofibrant. Then, for
morphisms 5 , 6 ∈ C(G, H), we have 5 ℎ∼ℓ 6 if and only if there exists a left homotopy from 5 to 6.
That is, the existence of a left homotopy forms an equivalence relation.

Proof. We have three things to check: reflexivity, symmetry, and transitivity.
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(1) Reflexivity: let 5 : G → H be a morphism. Note that (G, idG , idG , idG) forms a (very good)
cylinder object for G, so 5 itself determines a homotopy from 5 to 5 .

(2) Symmetry: let 5 , 6 : G → H bemorphisms, and ℎ : �G → H a homotopy from 5 to 6. Note
that given the cylinder (�G, 80 , 81 , ?), the tuple (�G, 81 , 80 , ?) also defines a cylinder object
for G. Then the homotopy ℎ, now thought of in terms of the latter cylinder, defines a
homotopy from 6 to 5 .

(3) Transitivity: this is the only step where we need to use that G is cofibrant. Assume that
we have 5 , 6, : : G → H and left homotopies ℎ : �G → H from 5 to 6 and ℎ′ : �′G → H

from 6 to :; by Proposition 15.25, we may assume that these left homotopies are good.
We form a third cylinder �G as the pushout below left

�G

G �G G

�′G

?

81

8′0

@

?′

{

�G

G �G H

�′G

ℎ

81

8′0

ℎ′′

ℎ′

where, to be explicit, we set 90 = G
80→ �G → �G and 91 = G

8′1→ �′G → �G. The cylinder is
then given by (�G, 90 , 91 , @), butwe need to check that this is actually a cylinder object for
G, and this is where being cofibrant is essential. The only non-trivial aspect is checking
that @ ∈ , . Here, Lemma 15.24 tells us that 81 and 8′0 are trivial cofibrations, and thus
their pushouts are as well, so by the 2-out-of-3 property, @ is a weak equivalence. We
now get an induced left homotopy ℎ′′ : �G → H from 5 to :, as displayed above right.

This concludes the proof, as ℎ∼ℓ is the equivalence relation generated by the existence of a left
homotopy. �

In the model categorical setting, we in principle allow any choice of cylinder object (resp.
path object) for a left (resp. right) homotopy. This is in contrast with the classical theory in
algebraic topology, where one uses an explicit choice, namely the product with the inter-
val [0, 1]. However, much like the above, where everything simplifies significantly with a
(co)fibrancy assumption, the same is true with regards to this. Below, we see that when the
domain is cofibrant and the codomain is fibrant, homotopy theory looks exactly as it does
classically.

Proposition-Definition 15.27. Let C be a model category, and let 5 , 6 : G → H be morphisms in
C .

(1) Suppose G is cofibrant. If there is a left homotopy from 5 to 6, then there is a right homotopy
from 5 to 6.

(2) Suppose H is fibrant. If there is a right homotopy from 5 to 6, then there is a left homotopy from
5 to 6.

In particular, if G ∈ C2 and H ∈ C 5 , then the equivalence relations ℎ∼ℓ and ℎ∼A on C(G, H) agree, and
give an equivalence relation 5 ' 6. Furthermore, for the equivalence relation ', one may use a fixed
good cylinder object for G and a fixed good path object for H.

Proof. Statements (1) and (2) are dual, so it suffices to prove (1). In the process, we will see
that we can translate an arbitrary (good) left homotopy from 5 to 6 to a good right homotopy
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from 5 to 6 with a fixed path object for H. So, assume we have a left homotopy ℎ : �G → H

from 5 to 6, where by Proposition 15.25 we may assume that �G is good. Fix a good path
object H� for H, and note that 80 : G → �G is a trivial cofibration and (?0 , ?1) : H� → H × H is a
fibration, we have a solution to the lifting problem

G H H�

�G G × �G H × H

5

80

8

(?0 ,?1)

(?,id�G)

:

5×ℎ

where we now observe that
ℎ′ : G

81→ �G
:→ H�

is a right homotopy from 5 to 6. Indeed

?0 ◦ ℎ′ = ?0 ◦ : ◦ 81 = 5 ◦ ? ◦ 81 = ?0 ◦ 5 and ?1 ◦ ℎ′ = ℎ ◦ 81 = 6

as desired. The rest of the proposition follows. �

Notation 15.28. Let C be a model category. For G cofibrant and H fibrant, we write

[G, H] = C(G, H)/'

for the set of morphisms up to homotopy.

15.4 The homotopy categories associated to a model category

Themajor typically advertised feature ofmodel categories is that they allowyou good control
over localization. A model category (C ,Cof ,,,Fib) in particular is also a relative category
(C ,,), and so we may reasonably form C[,−1]. Typically, while one has a description of
this category, one has no way to know that it is, for example, locally small, and this presents
some subtle issues in workingwith localizations. Themajor input in amodel category is that
for nice enough objects, namely those that are both fibrant and cofibrant, the notion of weak
equivalence in fact identifies with the notion of homotopy equivalence, and this paves the way
for a homotopy-theoretic description of C[,−1]. We aim to prove this characterization now,
as well as explain some homotopy-theoretic categories one can associate to C .

We will start with a basic proposition explaining how homotopies interact with compo-
sition. To prove it, we need the following enhancement of Proposition 15.25 as a lemma.

Lemma 15.29. Let C be a model category, let G, H ∈ C , and assume H is fibrant. Consider maps
5 , 6 : G → H. Then there is a good left homotopy from 5 to 6 if and only if there is a very good left
homotopy from 5 to 6.

Proof. Of course, if there is a very good left homotopy, then there is a good left homotopy, so
what remains is the converse. Thus, suppose we have a good left homotopy ℎ : �G → H from
5 to 6. The cylinder comes equipped with a weak equivalence ? : �G → G, which we may (by
the 2-out-of-3 property of weak equivalences) factor into a trivial cofibration followed by a
trivial fibration

(�G ∼−→
?
G) = (�G ∼

�
@
�′G

∼
�
?′
G)

and the crux of the first part of the argument is that �′G can be turned into a very good cylinder
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object for G. In particular, we use the maps

8′: : G
8:
� �G

@
� �′G, ?′ : �′G → G

and one easily sees that this makes �′G into a very good cylinder object.
We have not yet used that H is fibrant, which only becomes essential in now moving the

homotopy ℎ : �G → H to a homotopy ℎ′ : �′G → H. For this, we apply the covering homotopy
property to the trivial cofibration �G

∼
� �′G and the fibration H � ∗, i.e. we solve the lifting

problem
�G H

�′G ∗

∼

ℎ

ℎ′

which yields ℎ′. �

Proposition 15.30. Let C be a model category, let G, H ∈ C , and suppose H is fibrant. Consider
maps 5 , 6 : G → H and 4 : F → G. If there is a left homotopy from 5 to 6, then there is a left homotopy
from 5 ◦ 4 to 6 ◦ 4.

Proof. The idea is this: one would like to use the strategy one sees in classical homotopy
theory, namely that if we have a homotopy � : [0, 1]×- → . between some 5 and 6, and we
have 4 : , → -, then we get a homotopy from 5 ◦ 4 to 6 ◦ 4 by composing with the obvious
map [0, 1] ×, → [0, 1] × - induced by 4.

Since H is fibrant, by Lemma 15.29 we may assume that the left homotopy ℎ : �G → H

from 5 to 6 is very good. Let �F be some good cylinder object for F. Since F q F → �F is a
cofibration and �G → G is a trivial fibration, we may solve the lifting problem

F q F G q G �G

�F F G

4q4

:

4

and now our desired homotopy is ℎ ◦ :. �

The above proposition, along with its dual, allow us to now specify the titular homotopy
categories associated to the model category C .

Proposition-Definition 15.31. Let C be a model category. Then the following statements hold.

(1) If H is fibrant, then composition in C induceds a composition

[G, H]ℓ × [F, G]ℓ → [F, H]ℓ .

(2) If F is cofibrant, then composition in C induces a composition

[G, H]A × [F, G]A → [F, H]A .

In particular, there are categories hC 5 , hC2 , and hC2 5 , the objects of which are the objects of C 5 , C2 ,
and C2 5 respectively, and for which the morphisms are given by

hC 5 (G, H) := [G, H]ℓ , hC2(G, H) := [G, H]A , hC2 5 (G, H) := [G, H].
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Proof. Statements (1) and (2) are dual to each other, so we prove (1). What we have to show is
that if we have morphisms 5 , 5 ′ : G → H and 4 , 4′ : F → G, along with left homotopies from
5 to 5 ′ and 4 to 4′, then we have left homotopies from 5 ◦ 4 to 5 ′ ◦ 4 and 5 ◦ 4 to 5 ◦ 4′. The
former is just Proposition 15.30, since all objects are assumed to be fibrant. For the latter, let
ℎ : �F → G be a left homotopy from 4 to 4′. Then 5 ◦ ℎ is a homotopy from 5 ◦ 4 to 5 ◦ 4′. �

Terminology 15.32. Let C be a model category. Objects of C2 5 are called bifibrant. Given
bifibrant objects G, H ∈ C2 5 , a morphism 5 : G → H is a homotopy equivalence if it has an inverse
up to homotopy, i.e. if its image in hC2 5 is an isomorphism.

At the opening of this subsection, we promised a homotopy-theoretic characterization of
some weak equivalences in a model category. We may finally arrive at this. Before we get to
it, we will need the following result.

Theorem 15.33. Let C be a model category, and let G, H ∈ C . Then the following statements hold.

(1) Suppose G is cofibrant and we have a trivial fibration ? : I → H. Then

?∗ : [G, I]ℓ → [G, H]ℓ

is a bijection.

(2) Suppose H is fibrant and 8 : F → G is a trivial cofibration. Then

8∗ : [G, H]A → [F, H]A

is a bijection.

Proof. Statements (1) and (2) are dual, so we prove (1). Note that the map ?∗ is well-defined,
following the second half of the proof of Proposition 15.31. We have two properties to check,
namely surjectivity and injectivity. Thus, suppose we have a morphism : : G → H, and
morphisms 5 , 6 : G → I for which there is a good left homotopy ℎ from ? ◦ 5 to ? ◦ 6.
For surjectivity, observe that we can find a preimage of : by means of the below left lifting
problem,

∅ I

G H

? ∼

:

G q G I

�G H

( 5 ,6)

? ∼

ℎ

and for injectivity, we obtain a left homotopy from 5 to 6 by means of the above right lifting
problem. �

The strategy for proving our homotopical characterization is similar towhatwe sawwhen
showing that weak equivalences are closed under retracts: we prove something first in the
case of a (co)fibration, then lift.

Lemma 15.34. Let C be a model category, and let 8 : G → I be a cofibration between bifibrant objects.
If 8 is a trivial cofibration, then it is a homotopy equivalence.

Proof. By Theorem 15.33, we have bijections

8∗ : [I, G] ∼−→ [G, G], 8∗ : [I, I] ∼−→ [G, I]

and may thus find, using the former bijection, 9 : I → G such that 9 ◦ 8 ' idG . We also have

(8 ◦ 9) ◦ 8 = 8 ◦ (9 ◦ 8) ' 8
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and therefore the other bijection implies 8 ◦ 9 ' idI , so 8 is a homotopy equivalence with
homotopy inverse 9. �

Theorem 15.35. Let C be a model category, let G, H ∈ C2 5 be bifibrant objects, and let 5 : G → H be
a morphism. Then the following are equivalent.

(1) 5 is a homotopy equivalence.

(2) 5 is a weak equivalence.

Proof. To start off, we do the following: factor 5 = ? ◦ 8 as a trivial cofibration 8 : G → I

followed by a fibration ? : I → H. Note that I is bifibrant, as (∅ → I) = ∅ → G → I and
(I → ∗) = (I → H → ∗). By Lemma 15.34, 8 is a homotopy equivalence, so it has a homotopy
inverse 9 : I → G.

(1)⇒ (2). Let 5 have a homotopy inverse 6, i.e. 6 ◦ 5 ' idG and 5 ◦ 6 ' idH . It suffices to
show that ? is a weak equivalence, as 8 is a trivial cofibration. Let ℎ : �H → H be a good left
homotopy from 5 ◦ 6 to idH . Then we solve the lifting problem

H I

�H H

80 ∼

8◦6

?

ℎ

ℎ′

which provides a good left homotopy ℎ′ from 8 ◦ 6 to @ := ℎ′ ◦ 81. Now

? ◦ @ = ? ◦ ℎ′ ◦ 81 = ℎ ◦ 81 = idH

and
@ ◦ ? ' (8 ◦ 6) ◦ ? ' 8 ◦ 6 ◦ ? ◦ (8 ◦ 9) = 8 ◦ 6 ◦ 5 ◦ 9 ' 8 ' 9 ' idI .

By Lemma 15.21, @ ◦ ? is a weak equivalence. Furthermore, we have a retraction

I I I

H I H

? @? ?

@ ?

which means ? is a retract of a weak equivalence, hence a weak equivalence.
(2)⇒ (1). If 5 is a weak equivalence, then by the 2-out-of-3 property ? is a weak equiv-

alence, hence a trivial fibration. Thus, the dual of Lemma 15.34 shows that ? is a homotopy
equivalence, so 5 = ? ◦ 8 is a homotopy equivalence. �

15.5 Appendix: HEP and CHP in model categories

In model categories, there are analogues of the homotopy extension property and covering ho-
motopy property from classical algebraic topology. They are essentially tautologies arising as
corollaries of the definition of good cylinder objects and good path objects.
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Lemma 15.36: Homotopy extension property. Let C be a model category, � : 0 → G a cofibration,
and H a fibrant object. Let H� be a good path object. Then the lifting problem

0 H�

G H

� ?0

has a solution.

Proof. Since H� is good, ?0 is a trivial fibration, so we conclude by the factorization system
(Cof ,, ∩ Fib). �

Similarly, one proves

Lemma 15.37: Covering homotopy property. Let C be a model category, � : 4 → 1 a fibration,
and G a cofibrant object. Let �G be a good cylinder object. Then the lifting problem

G 4

�G 1

80 �

has a solution.

Remark 15.38. We note that the choice of using 80 and ?0 is somewhat arbitrary, as the same
argument applies to 81 and ?1, or even (80 , 81) : G q G → �G and (?0 , ?1) : H� → H × H. In this
way, one can see that the definition of a good cylinder/path object is exactly such that the
above properties hold.
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16 Model categories & homotopy (co)limits (WIP)

In Lecture 15, we laid out the basic theory of model categories, and indicated that their struc-
ture can be used to understand localizations in a very convenient way. As part of the road
to formalizing this, we showed that weak equivalences between bifibrant objects are exactly
given by homotopy equivalences, defined in terms of mapping cylinders (or path spaces, equiv-
alently).

The purpose of this lecture is to continue down the path started in the last lecture. Wewill
show that the localization ho(C) = C[,−1] of a model category C at its weak equivalences
, is equivalent to the homotopy category of bifibrant objects hC2 5 , whose objects are the
bifibrant objects, and whose morphisms are given by homotopy-equivalence classes of maps
in C2 5 .

After doing the above, we will move to explaining some features of derived categories in
the setting of model categories, and one particularly interesting example, namely homotopy
(co)limits. In Lectures 7 through to 11, we explored topics in triangulated categories, and
frequently made use of the intuition of cones as “homotopy cokernels.” Homotopy colimits
in model categories provide a refinement of this notion.

Wewill use the same notation as in Lecture 15. The sources for the contents are primarily
the same also, namely [Cis19; Rie14; MP12].

16.1 The homotopy category of a model category (WIP)

We start with a construction which is integral to our interests of localization, and which are
a big part of the reason model categories are useful.

Construction 16.1: (Co)fibrant replacement. Consider amodel categoryC , and some object
G ∈ C . There are two operations afforded to us for free by the factorization systems on C ,
namely:

• We can produce a fibrant replacement of G. That is, a trivial cofibration G ∼−→ 'G where
'G is fibrant. To do this, factor G → ∗ into a trivial cofibration followed by a fibration.
Note that if G is cofibrant, then 'G is cofibrant.

• We can produce a cofibrant replacement of G. That is, a trivial fibration &G ∼−→ G, where
&G is cofibrant. To do this, factor∅ → G into a cofibration followed by a trivial fibration.
Note that if G is fibrant, then &G is fibrant.

When C has functorial factorizations, the above operations organize into deformations & ⇒
1 and 1⇒ '. As we do not assume we have functorial factorizations, we will not make use
of this fact. On the other hand, one can still get some amount of naturality for free.

Suppose we have a morphism 5 : G → G′, and that we fix cofibrant replacements

@ : &G
∼−→ G, @′ : &G′

∼−→ G′

and fibrant replacements
A : G → 'G, A′ : G′→ 'G′.

By solving the below lifting problems

∅ &G′

&G G G′

@′ ∼

@

& 5

5

G G′ 'G′

'G ∗

∼A

5 A′

' 5

we obtain morphisms & 5 : &G → &G′ and ' 5 : 'G → 'G′. Observe that these satisfy
@′ ◦& 5 = 5 ◦ @ and ' 5 ◦ A = A′ ◦ 5 .
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Proposition 16.2. Let C be a model category, and let 5 : G → G′ be a morphism in C . Consider the
morphism & 5 : &G → &G′ of Construction 16.1. Then the following statements hold.

(1) The morphism 5 is a weak equivalence if and only if & 5 is a weak equivalence.

(2) The left and right homotopy classes of & 5 depends only on the left homotopy class of 5 ◦ @.

(3) If G′ is fibrant, then the right homotopy class of & 5 depends only on the right homotopy class of
5 .

Proof. (1) Apply the 2-out-of-3 property to the defining diagram of & 5 .
(2) By Theorem 15.33, we have a bijection

@′∗ : [&G, &G′]ℓ
∼−→ [&G, G′]ℓ .

Furthermore, by Proposition 15.27, anything in the left homotopy class of & 5 is also in the
right homotopy class of & 5 .

(3) Note that&G′ is bifibrant. Applying Theorem 15.33 once again, alongwith Proposition
Proposition 15.30 and Proposition 15.27, we have

[G, G′]A → [G, G′]ℓ → [&G, G′]
∼←− [&G, &G′]

which implements&, where we note that since&G is cofibrant and G′ is fibrant, all homotopy
mapping spaces agree, hence why we discard the subscript. �

Construction 16.3: Replacement functors. With the help of Proposition 16.2, we can con-
struct replacement functors up to homotopy. In particular, we can construct functors

& : C → hC2 , ' : C → hC 5 .

Wehandle the former, since the latter is suitably dual. For all G ∈ C , choose cofibrant replace-
ments @G : &G

∼−→ G, and define& on objects by G ↦→ &G. Using these cofibrant replacements,
apply Construction 16.1 on morphisms to define& 5 for all 5 : G → H. On morphisms, define
& by

C(G, H) → C(&G, &H) → [&G, &H]A = hC2(&G, &H).
We need to show that this is a functor. First of all, when G = H and 5 = idG , one observes
that &idG only depends on the left homotopy class of @G , which corresponds to idG , so that
&idG = id&G .

Suppose we have morphisms G
5
→ H

6
→ I. We need to see that &(6 ◦ 5 ) = &(6) ◦ &( 5 ),

but for this, we note that &(6 ◦ 5 ) depends only on the left homotopy class of 6 ◦ 5 ◦ @G =

6 ◦ @H ◦&( 5 ) = @I ◦&(6) ◦&( 5 ) and this is uniquely determined by the left homotopy class
of &(6) ◦&( 5 ).

Thus, we see that we have a functor & : C → hC2 , and dually, a functor ' : C → hC 5 .
When we restrict the former to consider only fibrant objects, we can use the construction in
Proposition 16.2(3) to see that it induces a functor

h& : hC 5 → hC2 5 ,

on morphisms given by the composition

hC 5 (G, H) = [G, H]ℓ → [&G, H] � [&G, &H] = hC2 5 (G, H).

Similarly, one induces a functor h' : hC2 → hC2 5 , and thus two functors

h' ◦&, h& ◦ ' : C → hC2 5 .
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Exercise 41. Given an object G ∈ C in a model category C with chosen fibrant replacement
'G, cofibrant replacement &G, and furthermore additional replacements &'G and '&G,
show that there is a weak equivalence �G : '&G → &'G which assembles into a natural
isomorphism

� : h' ◦& ⇒ h& ◦ '
in the homotopy category.

Proposition 16.4. LetC be a model category, and write '& for the functor h'◦& constructed above.
Then the following statements hold.

(1) A morphism 5 : G → H in C is a weak equivalence if and only if '& 5 : '&G → '&H is an
isomorphism.

(2) Anymap in hC2 5 is a composite of morphisms in '&(C) and inverses of morphisms in '&(,).

Proof. (1) The morphism 5 is a weak equivalence if and only if the corresponding map
'&G → '&H in C is a weak equivalence, if and only if it is a homotopy equivalence, if
and only if it is an isomorphism in hC2 5 .

(2) �

Theorem 16.5. Let C be a model category. Write '& for the functor h'◦& constructed above. Then

'& : C → hC2 5

exhibits hC2 5 as a localization of C at the weak equivalences. In particular, there is a canonical equiv-
alence of categories hC2 5 ' ho(C).

Proof. Let � : C → D be a functor inverting the weak equivalences. �

16.2 Derived functors for model categories (TBD)

16.3 Homotopy (co)limits (TBD)
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17 Grothendieck categories & the Freyd–Mitchell embedding the-
orem

This lecture concerns properties of Grothendieck categories, with the motivating goal of
sketching the famous result that any small Abelian categorymay be embedded inside amod-
ule category (over some typically noncommmutative ring). The fundamental strategy is to
apply a result of the kind found in Appendix 4.5, which we begin with below, and show that
a suitable situation can be constructed for any small Abelian category through the use of Pro-
categories (which are the duals of Ind-categories). In particular, one considers a composition

A ↩→ Pro(A) →Mod�
for a suitable ring �.

17.1 A criterion for embedding into a module category

In Appendix 4.5, we provided a criterion for being equivalent to a particular module cate-
gory. However, with some care, one can change the assumptions by dropping compactness
to give a mere embedding, at least for small subcategories, which is good enough.

The underlying reason we can drop a compactness condition is the following lemma,
telling us that as long as we are only working with a small set of objects, we can get by with
a finite amount of data.

Lemma 17.1. Let A be a locally small Abelian category with a projective generator, and let A′ ⊆
Ob(A) be a small set. Then there is a projective generator ?′ of A such that each object in A′ is a
quotient of ?′.

Proof. For any G ∈ A, there is an epimorphism∐
?→G

? � G.

We thus set
?′ :=

∐
G∈A′

∐
?→G

?

which exists, as A′ is small. From this, we can componentwise define an epimorphism of
the form ?′ � G for any G ∈ A′, so that ?′ is a generator. Since coproducts of projectives are
projective, ?′ is a projective generator. �

With this in place, we can basically run through a simplified version of the proof of The-
orem 4.28.

Theorem 17.2. LetA be a locally small Abelian categorywith a projective generator, and letA′ ⊆ A
be a small Abelian subcategory. Then there is a ring � and a fully faithful exact embedding

A′ ↩→Mod�

ofA′ into the category of right modules over �.

Proof. By Lemma 17.1, we have a projective generator ? ∈ A for which every G ∈ A′ has a
surjection

? � G.

We let � = End(?). By (1) in Theorem 4.28, the functors

A(?,−) :A →Mod� , { A(?,−) :A′→Mod�
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are faithful. We need to show that the latter functor, i.e. the restriction of A(?,−) to A′, is
full. For this, we can essentially apply the same proof as (2) in Theorem 4.28, except that we
no longer need compactness. Consider an �-linear homomorphism

! :A(?, G) → A(?, H), G, H ∈ A′.

Consider an exact sequence
0→ ker�

�
↩→ ?

�
� G → 0.

We get a morphism !(�) : ? → H, and so we consider the situation

?

0 ker� ? G 0

H

�◦ℎ
ℎ

� �

!(�)

where we need to check that for all ℎ : ? → ker�, the composition satisfies !(�) ◦ � ◦ ℎ = 0.
For this,

!(�) ◦ � ◦ ℎ = !(� ◦ � ◦ ℎ) = !(0 ◦ ℎ) = 0

so that !(�) ◦ � = 0. Thus, we get an induced map 5 : G → H such that 5 ◦ � = !(�). To see
that 5∗ = !, applyingA(?,−) to our starting exact sequence yields that

A(?, ?) �∗
�A(?, G)

since ? is projective, so it suffices to see that ! ◦ �∗ = 5∗ ◦ �∗. However, for any 0 : ? → ?, we
have

( 5∗ ◦ �∗)(0) = ( 5 ◦ �)∗(0) = !(�) ◦ 0 = !(� ◦ 0) = (! ◦ �∗)(0).
We conclude thatA(?,−) : A′ → ModEnd(?) is fully faithful. It is, in addition, exact since ?
is projective. �

Remark 17.3. Note that in the above, by an Abelian subcategory,wemean a subcategory which
is Abelian and for which the inclusion functor is exact.

17.2 Grothendieck categories

Definition 17.4. A Grothendieck category is a locally small Abelian category admitting a gen-
erator and small colimits, for which small filtered colimits are exact.

Definition 17.5. Let C be a category, and let G ∈ C . A subobject of G is an equivalence class
of monomorphisms H ↩→ G, under the equivalence relation (H ↩→ G) ∼ (H′ ↩→ G) if and only
if there is a commutative triangle

H H′

G.

∼

We write H ⊆ G to say that H is a subobject of G, choosing a particular representative of the
equivalence class. Dually, a quotient of G is an equivalence class of epimorphisms G � H.

Lemma 17.6. Let � : C → D be a faithful functor. Then � reflects monomorphisms and epimor-
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phisms.

Proof. We prove that it reflects monomorphisms, as the other case is dual. Let 5 : G → H be
a morphism in C , and suppose that �( 5 ) is monic. Note that

I
0

⇒
1
G

5
→ H { �I

�0

⇒
�1
�G

� 5
→ �H

so that �0 = �1, hence 0 = 1 since � is faithful. �

Lemma 17.7. LetC be a balanced category, and letU be a small set of objects. Consider the following
conditions.

(1) U generate C .

(2) Suppose we have a morphism 5 : G → H in C . If

∀D ∈ U , 5∗ :A(D, G)
∼−→ A(D, H)

then 5 is an isomorphism.

Then (1) implies (2), and if C admits equalizers then (2) implies (1).

Proof. (1) implies (2): the statement thatU is a small set of generators is the same as saying
that the functor ∏

D∈U
C(D,−) : C → Set

is faithful. By Lemma 17.6, it therefore reflects epimorphisms and monomorphisms; since C
and Set are balanced, this means it is conservative. The condition (2) is exactly that 5 is sent
to an isomorphism under the above functor.

(2) implies (1): by assumption
∏

D∈U C(D,−) is a convervative functor; let 5 , 6 : G → H be
a pair of parallel arrows, and consider : : eq( 5 , 6) ↩→ G. Since

∏
D∈U C(D,−) commutes with

limits, we have ∏
D∈U
C(D, eq( 5 , 6)) ∼−→ eq(( 5∗)D∈U , (6∗)D∈U ).

If we assume that 5 ◦ ℎ = 6 ◦ ℎ for all ℎ : D → G, then the latter set is just
∏

D∈U C(D, G), so by
conservativity we get that eq( 5 , 6) ∼−→ G, hence 5 = 6. �

Proposition 17.8. LetA be a Grothendieck category, and let G ∈ A. Then the set of subobjects of G
and the set of quotients of G are small.

Proof. Note that any Abelian category admits finite limits, since they admit finite products
and equalizers. Now, denote by ((G) the set of subobjects of G, and let D ∈ A be a generator.
The functor C(D,−) provides a map

� : ((G) → P(C(D, G)), (G′ �
↩→ G) ↦→ �∗(C(D, G′)) ⊆ C(D, G)

where we note that �∗ is injective since � is a monomorphism. By assumption, A is locally
small, hence P(C(D, G)) is small, so it suffices to see that the above map of sets � is injective.

First of all, we have that �(G′) � C(D, G′) for any G′ ⊆ G. Let G′ ⊆ G and G′′ ⊆ G. The
pullback G′ ×G G′′ is then also a subobject of G, and if �(G′) = �(G′′) then

C(D, G′ ×G G′′) � C(D, G′) ×C(D,G) C(D, G′′) � �(G′) ∩ �(G′′) = �(G′) = �(G′′).

Applying Lemma 17.7, we see that G′ ∼←− G′ ×G G′′
∼−→ G′′ and in particular G′ � G′′.
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To see that the set of quotients is small, note that 5 : G → H is an epimorphism if and only
if

0→ ker 5 ↩→ G
5
→ H → 0

is exact, which uniquely identifies H as the cokernel of ker 5 ↩→ G. In other words, quotients
of G correspond to subobjects, which form a small set. �

Proposition 17.9. LetA be a Grothendieck category, and letU be some small set of generators. Let
I ∈ A. Then the following are equivalent:

(1) I is injective.

(2) For all D ∈ U and all subobjects E ⊆ D, the restriction map

A(D, I) → A(E, I)

is surjective.

Proof. Certainly (1) implies (2). Conversely, assume (2). We want to show that I is injective,
so consider the situation

G′ G

I

5

ℎ ∃?

where we want to find the dashed arrow. We consider the category Δ(ℎ) whose objects are
diagrams � of the form

G′ H G

I

:

ℎ

5

6

ℓ

which we denote � = (H, :, 6, ℓ ), and a morphism � → �′ = (H′, :′, 6′, ℓ ′) is a morphism
C : H → H′ making the diagram

H H′ G

I

C

ℓ

6

ℓ ′

6′

commute. Note that C is automatically a monomorphism, and that since ℓ ′ is a monomor-
phism, if a morphism � → �′ exists, then it is unique. Now, let Σ(ℎ) be the set of isomor-
phism classes in Δ(ℎ); this is a small set by Proposition 17.8. We turn it into a poset by letting
� ≤ �′ if and only if there exists a morphism � → �′. One sees that Δ(ℎ) ' Σ(ℎ).

There is a functor Δ(ℎ) → A given by sending (H, :, 6, ℓ ) to H, which induces a functor
Σ(ℎ) → A. We can use this to see that any chain in Σ(ℎ) has an upper bound: given a chain

 : � → Σ(ℎ),

since small filtered colimits are exact inA, we may take the colimit of the induced diagram
′ : � →A, which is filtered, and hence the inducedmap lim−→ ′→ G is injective by exactness.
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Then lim−→ ′ together with its canonically induced maps to G and I is an upper bound for the
chain .

By Zorn’s lemma, Σ(ℎ) has a maximal element, say (H0 , :0 , 60 , ℓ0). By Lemma 17.7, to
check that H0

∼−→ G, it suffices to check that the injective maps

∀D ∈ U , ℓ∗ : C(D, H0) ↩→ C(D, G)

are also surjective. Thus, consider a morphism ! : D → G, and define an object H ∈ A by the
pullback

H H0

D G.

ℓ
!

Since ℓ is monic, so is the induced map H → D. Now define an object H1 ∈ A by the pushout

H H0

D H1.

Expressing pullbacks in terms of equalizers, and that in terms of kernels, we have an exact
sequence

0→ H → H0 ⊕ D
A→ G

but doing the same for the definition of H1, one sees that H1 � im A ⊆ G, and we deduce that
the canonical map H1 → G is monic. Now, H is also a subobject of D, so by (2), the composite
H → H0 → I factors as in the diagram

H D

H0 H1 G

I

!

which induces the dashed arrow H1 → I by universal property. This endows H1 with the
structure of an object in Δ(G), so by maximality of H0, we have that H0 � H1 so that ! factors
through H0 as desired. �

The below theorem is the fruit of our labour, and it crucially relies essentially on the above
proposition.

Theorem 17.10. LetA be a Grothendieck category. Then the following statements hold.

(1) A has enough injectives.

(2) A has an injective cogenerator, i.e.Aop has a projective generator.

Proof. Let D be a generator ofA.
(1) Let G ∈ A. For any ordinal , we define an object "(G) ∈ A, and we will do this

in such a way that we can check condition (2) in Proposition 17.9. We do this inductively;
consider the set

�(G) := {(E, 5 ) | E ⊆ D, 5 : E → G}.
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We define "1(G) by the pushout ∐
(E, 5 )∈�(G) E G

∐
(E, 5 )∈�(G) D "1(G)

so that "1 is the cokernel of the map∐
(E, 5 )∈�(G)

E → G ⊕
∐
(E, 5 )∈�

D

induced by the maps 5 : E → G and the inclusions E ⊆ D. If 5 : E → G is a morphism from
a subobject of D to G, then it extends to a map D → "1(G) in the obvious way. We have thus
embedded G in some object "1(G), but it is not good enough as it is not injective.

We now define "(G) for an ordinal  through transfinite induction in such a way that
there are monomorphisms

"�′(G) ↩→ "�(G)
whenever �′ < � < , such that these are compatible with the ordering on ordinals. Assume
that "� and the above monomorphisms are defined for all � < . If  = � + 1, then set
"(G) := "1("�(G)); we get a monomorphism "�(G) ↩→ "(G) by the above. If  is a limit
ordinal, then {"�(G) | � < } defines a directed system and we let "(G) be its colimit. For
any � < , the canonical map "�(G) → "(G) is then a monomorphism.

Now let Ω be the smallest infinite ordinal whose cardinality is strictly greater than the
cardinality of the set of subobjects of D. We claim that "Ω(G) is injective. Let E ⊆ D be a
subobject, and let 5 : E → "Ω(G) be a morphism. One obtains a system of subobjects E� ⊆ D,
given by the pullback

E� "�(G)

E "Ω(G)
5

and one sees that

lim−→
�<Ω

E� = lim−→
�<Ω

(E ×"Ω(G) "�(G)) � E ×"Ω(G) lim−→
�<Ω

("�(G)) = E ×"Ω(G) "Ω(G) = E

since filtered colimits inA commute with finite limits. In particular, EΩ = E. However, since
Ω is strictly larger than the number of subobjects of D, there must be some � < Ω for which
E = E�, so 5 : E → "Ω(G) factors through some map E → "�(G), which we can then extend:

E "�(G)

"�+1(G)

D "Ω(G)
so we conclude that "Ω(G) is injective by Proposition 17.9.

(2) By Proposition 17.8, the generator D has a small set of quotients; hence there is a set &
of objects such that any quotient of D is isomorphic to an object in &. Let @0 =

⊕
I∈& I, and

consider an embedding @0 ↩→ @ into an injective @ ∈ A, which exists by (1). We aim to show
that @ is a cogenerator. We begin by showing that

A(G, @) � 0 =⇒ G � 0.
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Suppose the left condition holds. For any map ℎ : D → G, the below right map

im ℎ ↩→ G { A(G, @) → A(im ℎ, @)

is surjective since @ is injective. Therefore, ifA(G, @) � 0, we see thatA(im ℎ, @) � 0. Now,
im ℎ is a quotient of D, hence isomorphic to some I ∈ & and there is a monomorphism

im ℎ
∼−→ I ↩→ @0 ↩→ @.

Therefore, im ℎ � 0, so ℎ = 0 andA(D, G) � 0 � A(D, 0). We conclude that G � 0.
Finally, consider a morphism 5 : G → H for which 5 ∗ : A(H, @) ∼−→ A(G, @); it suffices to

show that 5 is an isomorphism. SinceA(−, @) is exact, we have an exact sequence

0→A(coker 5 , @) → A(H, @) ∼−→ A(G, @) → A(ker 5 , @) → 0

which shows that A(coker 5 , @) � A(ker 5 , @) � 0, so by what we have shown, coker 5 �
ker 5 � 0, so 5 is an isomorphism. �

Exercise 42.

(1) Prove that in an Abelian category, the pushout of a monomorphism is a monomor-
phism

G H

G′ H′

by proving that the above diagram is also a pullback diagram, and that in a pullback
diagram the kernels of the vertical arrows agree.

(2) Prove that in a Grothendieck category, the canonical maps to the colimit of a directed
system whose transition maps are monic, are monic:

· · · G8 · · · G8′ · · ·

lim−→:∈�
G:

17.3 Closure properties of Ind-categories & the Embedding Theorem (WIP)

Theorem 17.11. Let A be a small Abelian category. Then Ind(A) is a Grothendieck category, and
the inclusionA ↩→ Ind(A) is exact.

Proving this is done by studying the closure properties of Ind(A) under (co)limit con-
structions.

Proposition 17.12. Let C be a locally small category, and assume that C admits finite limits. Then
the following statements hold.

(1) Ind(C) admits finite limits.

(2) Ind(C) ↩→ PSh(C) preserves finite limits.

(3) C ↩→ Ind(C) preserves finite limits.
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(4) Filtered colimits in Ind(C) are exact, i.e. commute with finite limits.

Proof. We prove (1) and (2) simultaneously, afterwhich (3) follows by noting that the Yoneda
embedding C ↩→ PSh(C) preserves all small limits, and (4) follows by filtered colimits in
PSh(C) being exact (inheriting this property from Set).

We show that Ind(C) admits binary products and equalizers. Thus, consider �, � ∈
Ind(C), and write

� � lim−→
8∈�

ℎ�(8) , � � lim−→
9∈�

ℎ�′(9)

for some filtered diagrams � : � → C , �′ : � → C . Then, in PSh(C),

� × � � lim−→
(8 , 9)∈�×�

ℎ�(8)×�′(9) ∈ Ind(C)

so Ind(C) admits binary products, computed in PSh(C).
To see that we have equalizers, fix some G ∈ C , and consider the full subcategory C ′ of

all � ∈ PSh(C) for which the equalizer in PSh(C) of any pairs of maps ℎG ⇒ � is in Ind(C).
Then C ↩→ C ′ since C admits finite limits, and C ′ is closed under filtered colimits. However,
by universal property, we must then have that C ′ ' Ind(C). Now we reverse the roles, and
consider �

Theorem 17.13: Freyd–Mitchell embedding theorem. LetA be a small Abelian category. Then
there is a ring � and a fully faithful exact functor

A ↩→Mod�.

Proof. Note thatAop is a small Abelian category, hence we can consider the embedding

Aop ↩→ Ind(Aop).

Taking the opposite, we get the embedding

A ↩→ Pro(A).

Now, Ind(Aop) is a Grothendieck category, hence has an injective cogenerator, so Pro(A) :=
Ind(Aop)op is a locally smallAbelian categorywith a projective generator. ApplyingTheorem
17.2, we are done. �

Remark 17.14. While the embedding theorem itself only applies to small Abelian categories,
it may still be utilized when working with potentially large ones. In practice, one applies the
theorem when diagram-chasing; thus, given a small diagram � : � → A, one may consider
the smallest subcategoryA′ ofA which

(1) is small,

(2) is Abelian,

(3) contains the image of �, and for which

(4) the inclusionA′ ↩→A is exact.

Thus, one factors � as � →A′ ↩→A, and embedsA′ in a module category wherein one can
do as much chasing as one wants.
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